Optimizing brain tissue contrast with EPI: A simulated annealing approach

被引:14
作者
Ikonomidou, VN [1 ]
van Gelderen, P [1 ]
de Zwart, JA [1 ]
Fukunaga, M [1 ]
Duyn, JH [1 ]
机构
[1] NINDS, Adv MRI Sect, LFMI, NIH, Bethesda, MD 20892 USA
关键词
brain tissue labeling; T-1; weighting; optimization (simulated annealing); functional mapping; double inversion recovery;
D O I
10.1002/mrm.20561
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
A new magnetization preparation and image acquisition scheme was developed to obtain high-resolution brain images with optimal tissue contrast. The pulse sequence was derived from an optimization process using simulated annealing, without prior assumptions with regard to the number of radiofrequency (RF) pulses and flip angles. The resulting scheme combined two inversion pulses with the acquisition of three images with varying contrast. The combination of the three images allowed separation of gray matter (GM), white matter (WM), and cerebrospinal fluid (CSF) based on T-1 contrast. It also enabled the correction of small errors in the initial T, estimates in post-processing. The use of three-dimensional (313) sensitivity-encoded (SENSE) echo-planar imaging (EPI) for image acquisition made it possible to achieve a 1.15(3) mm(3) isotropic resolution within a scan time of 10 min 21 s. The cortical GM signal-to-noise ratio (SNR) in the calculated GIVI-only image varied between 30 and 100. The novel technique was evaluated in combination with blood oxygen level-dependent (BOLD) functional magnetic resonance imaging (fMRl) on human subjects, and provided for excellent coregistration of anatomical and functional data.
引用
收藏
页码:373 / 385
页数:13
相关论文
共 35 条
[1]   Qualitative and quantitative evaluation of six algorithms for correcting intensity nonuniformity effects [J].
Arnold, JB ;
Liow, JS ;
Schaper, KA ;
Stern, JJ ;
Sled, JG ;
Shattuck, DW ;
Worth, AJ ;
Cohen, MS ;
Leahy, RM ;
Mazziotta, JC ;
Rottenberg, DA .
NEUROIMAGE, 2001, 13 (05) :931-943
[2]   Unraveling multisensory integration: patchy organization within human STS multisensory cortex [J].
Beauchamp, MS ;
Argall, BD ;
Bodurka, J ;
Duyn, JH ;
Martin, A .
NATURE NEUROSCIENCE, 2004, 7 (11) :1190-1192
[3]   T1 AND T2 MEASUREMENTS ON A 1.5-T COMMERCIAL MR IMAGER [J].
BREGER, RK ;
RIMM, AA ;
FISCHER, ME ;
PAPKE, RA ;
HAUGHTON, VM .
RADIOLOGY, 1989, 171 (01) :273-276
[4]   MR IMAGING - CLINICAL USE OF THE INVERSION RECOVERY SEQUENCE [J].
BYDDER, GM ;
YOUNG, IR .
JOURNAL OF COMPUTER ASSISTED TOMOGRAPHY, 1985, 9 (04) :659-675
[5]   Human ocular dominance columns as revealed by high-field functional magnetic resonance imaging [J].
Cheng, K ;
Waggoner, RA ;
Tanaka, K .
NEURON, 2001, 32 (02) :359-374
[6]   PARTIAL VOLUME TISSUE CLASSIFICATION OF MULTICHANNEL MAGNETIC-RESONANCE IMAGES - A MIXEL MODEL [J].
CHOI, HS ;
HAYNOR, DR ;
KIM, YM .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 1991, 10 (03) :395-407
[7]   MRI SEGMENTATION - METHODS AND APPLICATIONS [J].
CLARKE, LP ;
VELTHUIZEN, RP ;
CAMACHO, MA ;
HEINE, JJ ;
VAIDYANATHAN, M ;
HALL, LO ;
THATCHER, RW ;
SILBIGER, ML .
MAGNETIC RESONANCE IMAGING, 1995, 13 (03) :343-368
[8]   Signal-to-noise ratio and parallel Imaging performance of a 16-channel receive-only brain coil array at 3.0 Tesla [J].
de Zwart, JA ;
Ledden, PJ ;
van Gelderen, P ;
Bodurka, J ;
Chu, RX ;
Duyn, JH .
MAGNETIC RESONANCE IN MEDICINE, 2004, 51 (01) :22-26
[9]   Design of a SENSE-optimized high-sensitivity MRI receive coil for brain imaging [J].
de Zwart, JA ;
Ledden, PJ ;
Kellman, P ;
van Gelderen, P ;
Duyn, JH .
MAGNETIC RESONANCE IN MEDICINE, 2002, 47 (06) :1218-1227
[10]   Optimization of 3-D MP-RAGE sequences for structural brain imaging [J].
Deichmann, R ;
Good, CD ;
Josephs, O ;
Ashburner, J ;
Turner, R .
NEUROIMAGE, 2000, 12 (01) :112-127