Spectral conjugate gradient methods with sufficient descent property for large-scale unconstrained optimization

被引:78
作者
Yu, Gaohang [1 ]
Guan, Lutai [1 ]
Chen, Wufan [2 ]
机构
[1] Sun Yat Sen Univ, Dept Sci Computat & Comp Applicat, Guangzhou, Guangdong, Peoples R China
[2] So Med Univ, Sch Biomed Engn, Guangzhou, Guangdong, Peoples R China
基金
美国国家科学基金会;
关键词
unconstrained optimization; spectral conjugate gradient method; large-scale optimization; global convergence;
D O I
10.1080/10556780701661344
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
A class of new spectral conjugate gradient methods are proposed in this paper. First, we modify the spectral Perry's conjugate gradient method, which is the best spectral conjugate gradient algorithm SCG by Birgin and Martinez [E.G. Birgin and J.M. Martinez, A spectral conjugate gradient method for unconstrained optimization, Appl. Math. Optim. 43 (2001), 117-128.], such that it possesses sufficient descent property for any (inexact) line search. It is shown that, for strongly convex functions, the method is a global convergent. Further, a global convergence result for nonconvex minimization is established when the line search fulfils the Wolfe line search conditions. Some other spectral conjugate gradient methods with guaranteed descent are presented here. Numerical comparisons are given with both SCG and CG_DESCENT methods using the unconstrained optimization problems in the CUTE library.
引用
收藏
页码:275 / 293
页数:19
相关论文
共 26 条
[1]   Scaled memoryless BFGS preconditioned conjugate gradient algorithm for unconstrained optimization [J].
Andrei, Neculai .
OPTIMIZATION METHODS & SOFTWARE, 2007, 22 (04) :561-571
[2]   2-POINT STEP SIZE GRADIENT METHODS [J].
BARZILAI, J ;
BORWEIN, JM .
IMA JOURNAL OF NUMERICAL ANALYSIS, 1988, 8 (01) :141-148
[3]   A spectral conjugate gradient method for unconstrained optimization [J].
Birgin, EG ;
Martínez, JM .
APPLIED MATHEMATICS AND OPTIMIZATION, 2001, 43 (02) :117-128
[4]   CUTE - CONSTRAINED AND UNCONSTRAINED TESTING ENVIRONMENT [J].
BONGARTZ, I ;
CONN, AR ;
GOULD, N ;
TOINT, PL .
ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 1995, 21 (01) :123-160
[5]   New conjugacy conditions and related nonlinear conjugate gradient methods [J].
Dai, YH ;
Liao, LZ .
APPLIED MATHEMATICS AND OPTIMIZATION, 2001, 43 (01) :87-101
[6]   A nonlinear conjugate gradient method with a strong global convergence property [J].
Dai, YH ;
Yuan, Y .
SIAM JOURNAL ON OPTIMIZATION, 1999, 10 (01) :177-182
[7]   Benchmarking optimization software with performance profiles [J].
Dolan, ED ;
Moré, JJ .
MATHEMATICAL PROGRAMMING, 2002, 91 (02) :201-213
[8]   FUNCTION MINIMIZATION BY CONJUGATE GRADIENTS [J].
FLETCHER, R ;
REEVES, CM .
COMPUTER JOURNAL, 1964, 7 (02) :149-&
[9]  
Fletcher R., 1997, UNCONSTRAINED OPTIMI, VI
[10]  
GIBERT JC, 1992, SIAM J OPTIMIZ, V2, P21