Spectrality of Sierpinski-type self-affine measures

被引:12
作者
Lu, Zheng-Yi [1 ]
Dong, Xin-Han [1 ]
Liu, Zong-Sheng [2 ]
机构
[1] Hunan Normal Univ, Coll Math & Stat, Key Lab Comp & Stochast Math, Minist Educ, Changsha 410081, Peoples R China
[2] Hengyang Normal Univ, Coll Math & Stat, Hengyang 421000, Hunan, Peoples R China
关键词
Self-affine measure; Orthogonal basis; Spectral measure; FOURIER-SERIES; MORAN MEASURES; GASKET; CONVERGENCE; MOCK; CONJECTURE; PROPERTY;
D O I
10.1016/j.jfa.2021.109310
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the spectral property of a class of Sierpinski-type self-affine measures mu(M,D )(.) =1/3 Sigma(d is an element of D) mu(M, D) (M (.) - d) on R-2, where M = [GRAPHICS] . is a real upper triangular expanding matrix and D = {((0)(0)), (d1)((0)), ((d2)(d3))} is a three-element real digit set with d(1)d(3) not equal 0. A necessary and sufficient condition for mu(M,D) to be a spectral measure is established. (C) 2021 Elsevier Inc. All rights reserved.
引用
收藏
页数:31
相关论文
共 52 条
[1]   Spectrality and non-spectrality of the Riesz product measures with three elements in digit sets [J].
An, Li-Xiang ;
He, Liu ;
He, Xing-Gang .
JOURNAL OF FUNCTIONAL ANALYSIS, 2019, 277 (01) :255-278
[2]   On spectral Cantor-Moran measures and a variant of Bourgain's sum of sine problem [J].
An, Lixiang ;
Fu, Xiaoye ;
Lai, Chun-Kit .
ADVANCES IN MATHEMATICS, 2019, 349 :84-124
[3]   BROWNIAN-MOTION ON THE SIERPINSKI GASKET [J].
BARLOW, MT ;
PERKINS, EA .
PROBABILITY THEORY AND RELATED FIELDS, 1988, 79 (04) :543-623
[4]   CHAOTIC STATES OF ALMOST PERIODIC SCHRODINGER-OPERATORS [J].
BELLISSARD, J ;
BESSIS, D ;
MOUSSA, P .
PHYSICAL REVIEW LETTERS, 1982, 49 (10) :701-704
[5]   Calculus on the Sierpinski gasket II: Point singularities, eigenfunctions, and normal derivatives of the heat kernel [J].
Ben-Gal, Nitsan ;
Shaw-Krauss, Abby ;
Strichartz, Robert S. ;
Young, Clint .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2006, 358 (09) :3883-3936
[6]   Partial differential equations on products of Sierpinski gaskets [J].
Bockelman, Brian ;
Strichartz, Robert S. .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2007, 56 (03) :1361-1375
[7]   ON CONVERGENCE AND GROWTH OF PARTIAL SUMS OF FOURIER SERIES [J].
CARLESON, L .
ACTA MATHEMATICA UPPSALA, 1966, 116 (1-2) :135-&
[8]   On the orthogonal exponential functions of a class of planar self-affine measures [J].
Chen, Ming-Liang ;
Wang, Xiang-Yang ;
Zheng, Jia .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2020, 485 (10)
[9]   Spectrality of a class of planar self-affine measures with three-element digit sets [J].
Chen, Yan ;
Dong, Xin-Han ;
Zhang, Peng-Fei .
ARCHIV DER MATHEMATIK, 2021, 116 (03) :327-334
[10]   Spectrality of self-affine Sierpinski-type measures on R2 [J].
Dai, Xin-Rong ;
Fu, Xiao-Ye ;
Yan, Zhi-Hui .
APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2021, 52 (52) :63-81