Computational model of gastric motility with active-strain electromechanics

被引:19
作者
Brandstaeter, Sebastian [1 ]
Gizzi, Alessio [2 ]
Fuchs, Sebastian L. [1 ,3 ]
Gebauer, Amadeus M. [1 ]
Aydin, Roland C. [1 ]
Cyron, Christian J. [3 ,4 ]
机构
[1] Tech Univ Munich, Insitute Computat Mech, Boltzmannstr 15, D-85748 Garching, Germany
[2] Campus Biomedico Univ Rome, Dept Engn, Via A del Portillo 21, I-00128 Rome, Italy
[3] Hamburg Univ Technol, Inst Continuum & Mat Mech, Eissendorfer Str 42, D-21073 Hamburg, Germany
[4] Helmholtz Zentrum Geesthacht, Inst Mat Res Mat Mech, Max Planck Str 1, D-21502 Geesthacht, Germany
来源
ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK | 2018年 / 98卷 / 12期
关键词
active-strain electro-mechanics; electrophysiology; finite elasticity; gastric motility; SKELETAL-MUSCLE TISSUE; SLOW-WAVE ACTIVITY; INTERSTITIAL-CELLS; MECHANICAL-PROPERTIES; PACEMAKER ACTIVITY; CHLORIDE CHANNELS; CAJAL; PROPAGATION; CONTRACTION; GENERATION;
D O I
10.1002/zamm.201800166
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present an electro-mechanical constitutive framework for the modeling of gastric motility, including pacemaker electrophysiology and smooth muscle contractility. In this framework, we adopt a phenomenological description of the gastric tissue. Tissue electrophysiology is represented by a set of two minimal two-variable models and tissue electromechanics by an active-strain finite elasticity approach. We numerically investigate the implication of the spatial distribution of pacemaker cells on the entrainment and synchronization of the slow waves characterizing gastric motility in health and disease. On simple schematic model geometries, we demonstrate that the proposed computational framework is amenable to large scale in-silico analyses of the complex gastric motility including the underlying electro-mechanical coupling.
引用
收藏
页码:2177 / 2197
页数:21
相关论文
共 92 条
[21]  
Fenton F.H., 2008, SCHOLARPEDIA, V3, P1868, DOI DOI 10.4249/SCHOLARPEDIA.1868
[22]  
Franzone P. C., 2018, FRONT PHYSIOL, P9
[23]   A quantitative description of active force generation in gastrointestinal smooth muscle [J].
Gajendiran, Viveka ;
Buist, Martin L. .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING, 2011, 27 (03) :450-460
[24]   Nonlinear diffusion and thermo-electric coupling in a two-variable model of cardiac action potential [J].
Gizzi, A. ;
Loppini, A. ;
Ruiz-Baier, R. ;
Ippolito, A. ;
Camassa, A. ;
La Camera, A. ;
Emmi, E. ;
Di Perna, L. ;
Garofalo, V. ;
Cherubini, C. ;
Filippi, S. .
CHAOS, 2017, 27 (09)
[25]   On the electrical intestine turbulence induced by temperature changes [J].
Gizzi, A. ;
Cherubini, C. ;
Migliori, S. ;
Alloni, R. ;
Portuesi, R. ;
Filippi, S. .
PHYSICAL BIOLOGY, 2010, 7 (01)
[26]   Statistical characterization of the anisotropic strain energy in soft materials with distributed fibers [J].
Gizzi, Alessio ;
Pandolfi, Anna ;
Vasta, Marcello .
MECHANICS OF MATERIALS, 2016, 92 :119-138
[27]   Theoretical and Numerical Modeling of Nonlinear Electromechanics with applications to Biological Active Media [J].
Gizzi, Alessio ;
Cherubini, Christian ;
Filippi, Simonetta ;
Pandolfi, Anna .
COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2015, 17 (01) :93-126
[28]   Effects of pacing site and stimulation history on alternans dynamics and the development of complex spatiotemporal patterns in cardiac tissue [J].
Gizzi, Alessio ;
Cherry, Elizabeth M. ;
Gilmour, Robert F. ;
Luther, Stefan ;
Filippi, Simonetta ;
Fenton, Flavio H. .
FRONTIERS IN PHYSIOLOGY, 2013, 4
[29]   Biomechanics of the gastrointestinal tract [J].
Gregersen, H ;
Kassab, G .
NEUROGASTROENTEROLOGY AND MOTILITY, 1996, 8 (04) :277-297
[30]   Mechanical properties in the human gastric antrum using B-mode ultrasonography and antral distension [J].
Gregersen, H ;
Gilja, OH ;
Hausken, T ;
Heimdal, A ;
Gao, C ;
Matre, K ;
Odegaard, S ;
Berstad, A .
AMERICAN JOURNAL OF PHYSIOLOGY-GASTROINTESTINAL AND LIVER PHYSIOLOGY, 2002, 283 (02) :G368-G375