NUMERICAL CONVERGENCE IN SMOOTHED PARTICLE HYDRODYNAMICS

被引:91
作者
Zhu, Qirong [1 ,2 ]
Hernquist, Lars [3 ]
Li, Yuexing [1 ,2 ]
机构
[1] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA
[2] Penn State Univ, Inst Gravitat & Cosmos, University Pk, PA 16802 USA
[3] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA
基金
美国国家科学基金会;
关键词
hydrodynamics; methods: numerical; MOVING-MESH; SUBSONIC TURBULENCE; GALAXY FORMATION; SIMULATION CODE; SPH; PROJECT; ENVIRONMENTS; DISSIPATION; FEEDBACK; DENSITY;
D O I
10.1088/0004-637X/800/1/6
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We study the convergence properties of smoothed particle hydrodynamics (SPH) using numerical tests and simple analytic considerations. Our analysis shows that formal numerical convergence is possible in SPH only in the joint limit N -> infinity, h -> 0, and N-nb -> infinity, where N is the total number of particles, h is the smoothing length, and N-nb is the number of neighbor particles within the smoothing volume used to compute smoothed estimates. Previous work has generally assumed that the conditions N -> infinity and h -> 0 are sufficient to achieve convergence, while holding N-nb fixed. We demonstrate that if Nnb is held fixed as the resolution is increased, there will be a residual source of error that does not vanish as N -> infinity and h -> 0. Formal numerical convergence in SPH is possible only if N-nb is increased systematically as the resolution is improved. Using analytic arguments, we derive an optimal compromise scaling for N-nb by requiring that this source of error balance that present in the smoothing procedure. For typical choices of the smoothing kernel, we find N-nb proportional to N-0.5. This means that if SPH is to be used as a numerically convergent method, the required computational cost does not scale with particle number as O(N), but rather as O(N1+delta), where delta approximate to 0.5, with a weak dependence on the form of the smoothing kernel.
引用
收藏
页数:13
相关论文
共 50 条
[1]   Fundamental differences between SPH and grid methods [J].
Agertz, Oscar ;
Moore, Ben ;
Stadel, Joachim ;
Potter, Doug ;
Miniati, Francesco ;
Read, Justin ;
Mayer, Lucio ;
Gawryszczak, Artur ;
Kravtosov, Andrey ;
Nordlund, Ake ;
Pearce, Frazer ;
Quilis, Vicent ;
Rudd, Douglas ;
Springel, Volker ;
Stone, James ;
Tasker, Elizabeth ;
Teyssier, Romain ;
Wadsley, James ;
Walder, Rolf .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2007, 380 (03) :963-978
[2]   Subsonic turbulence in smoothed particle hydrodynamics and moving-mesh simulations [J].
Bauer, Andreas ;
Springel, Volker .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2012, 423 (03) :2558-2578
[3]   On validating an astrophysical simulation code [J].
Calder, AC ;
Fryxell, B ;
Plewa, T ;
Rosner, R ;
Dursi, LJ ;
Weirs, VG ;
Dupont, T ;
Robey, HF ;
Kane, JO ;
Remington, BA ;
Drake, RP ;
Dimonte, G ;
Zingale, M ;
Timmes, FX ;
Olson, K ;
Ricker, P ;
MacNeice, P ;
Tufo, HM .
ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 2002, 143 (01) :201-229
[4]   Inviscid smoothed particle hydrodynamics [J].
Cullen, Lee ;
Dehnen, Walter .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2010, 408 (02) :669-683
[5]   Improving convergence in smoothed particle hydrodynamics simulations without pairing instability [J].
Dehnen, Walter ;
Aly, Hossam .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2012, 425 (02) :1068-1082
[6]   Implementation of feedback in smoothed particle hydrodynamics: towards concordance of methods [J].
Durier, Fabrice ;
Dalla Vecchia, Claudio .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2012, 419 (01) :465-478
[7]   SMOOTHED PARTICLE HYDRODYNAMICS - PHYSICAL VISCOSITY AND THE SIMULATION OF ACCRETION DISKS [J].
FLEBBE, O ;
MUNZEL, S ;
HEROLD, H ;
RIFFERT, H ;
RUDER, H .
ASTROPHYSICAL JOURNAL, 1994, 431 (02) :754-760
[8]   Equalizing resolution in smoothed-particle hydrodynamics calculations using self-adaptive sinc kernels [J].
Garcia-Senz, Domingo ;
Cabezon, Ruben M. ;
Escartin, Jose A. ;
Ebinger, Kevin .
ASTRONOMY & ASTROPHYSICS, 2014, 570
[9]   Following the flow: tracer particles in astrophysical fluid simulations [J].
Genel, Shy ;
Vogelsberger, Mark ;
Nelson, Dylan ;
Sijacki, Debora ;
Springel, Volker ;
Hernquist, Lars .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2013, 435 (02) :1426-1442
[10]   SMOOTHED PARTICLE HYDRODYNAMICS - THEORY AND APPLICATION TO NON-SPHERICAL STARS [J].
GINGOLD, RA ;
MONAGHAN, JJ .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 1977, 181 (02) :375-389