共 733 条
Nature-Inspired Structural Materials for Flexible Electronic Devices
被引:663
作者:
Liu, Yaqing
[1
]
He, Ke
[1
]
Chen, Geng
[1
]
Leow, Wan Ru
[1
]
Chen, Xiaodong
[1
]
机构:
[1] Nanyang Technol Univ, Sch Mat Sci & Engn, Innovat Ctr Flexible Devices iFLEX, 50 Nanyang Ave, Singapore 639798, Singapore
基金:
新加坡国家研究基金会;
关键词:
LITHIUM-ION BATTERY;
CARBON NANOTUBE FILMS;
THIN METAL-FILMS;
HIGH-PERFORMANCE ELECTRONICS;
FIELD-EFFECT TRANSISTORS;
GRAPHENE STRAIN SENSORS;
WEARABLE ENERGY-STORAGE;
LIGHT-EMITTING-DIODES;
ALL-SOLID-STATE;
TRIBOELECTRIC-NANOGENERATOR;
D O I:
10.1021/acs.chemrev.7b00291
中图分类号:
O6 [化学];
学科分类号:
0703 ;
摘要:
Exciting advancements have been made in the field of flexible electronic devices in the last two decades and will certainly lead to a revolution in peoples' lives in the future. However, because of the poor sustainability of the active materials in complex stress environments, new requirements have been adopted for the construction of flexible devices. Thus, hierarchical architectures in natural materials, which have developed various environment-adapted structures and materials through natural selection, can serve as guides to solve the limitations of materials and engineering techniques. This review covers the smart designs of structural materials inspired by natural materials and their utility in the construction of flexible devices. First, we summarize structural materials that accommodate mechanical deformations, which is the fundamental requirement for flexible devices to work properly in complex environments. Second, we discuss the functionalities of flexible devices induced by nature-inspired structural materials, including mechanical sensing, energy harvesting, physically interacting, and so on. Finally, we provide a perspective on newly developed structural materials and their potential applications in future flexible devices, as well as frontier strategies for biomimetic functions. These analyses and valuable for a systematic understanding of structural materials in electronic devices and will serve as inspirations for smart designs in flexible electronics.
引用
收藏
页码:12893 / 12941
页数:49
相关论文