New insights into controlling the twin structure of magnetic iron oxide nanoparticles

被引:14
作者
McDonagh, Birgitte H. [1 ,2 ]
Staudinger, Christoph [3 ]
Normile, Peter S. [4 ,5 ]
De Toro, Jose A. [4 ,5 ]
Bandyopadhyay, Sulalit [1 ]
Glomm, Wilhelm R. [1 ,2 ]
Singh, Gurvinder [1 ,6 ,7 ]
机构
[1] Norwegian Univ Sci & Technol, Dept Chem Engn, N-7491 Trondheim, Norway
[2] SINTEF Ind, Dept Biotechnol & Nanomed, N-7465 Trondheim, Norway
[3] Graz Univ Technol, Inst Analyt Chem & Food Chem, NAWI Graz, Stremayrgasse 9, A-8010 Graz, Austria
[4] Univ Castilla La Mancha, Inst Reg Invest Cientif Aplicada IRICA, Ciudad Real 13071, Spain
[5] Univ Castilla La Mancha, Dept Fis Aplicada, Ciudad Real 13071, Spain
[6] Univ Sydney, Sch Biomed Engn, Sydney, NSW 2008, Australia
[7] Univ Sydney, Sydney Nano Inst, Sydney, NSW 2006, Australia
关键词
Iron oxide; Multiply twinned; Magnetic nanoparticles; Reaction kinetics; Magnetic property; Anisotropic nanoparticles; CELLULAR INTERNALIZATION; SOLVOTHERMAL SYNTHESIS; NANOCRYSTAL SYNTHESIS; FE3O4; NANOPARTICLES; SURFACE-PROPERTIES; HIGH VALUES; OLEIC-ACID; SIZE; SHAPE; CRYSTALLINITY;
D O I
10.1016/j.apmt.2021.101084
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The concept of twinning has been extensively investigated in a range of metallic (e.g. Au, Ag, Cu and Pt) nanoparticle systems. However, the experimental strategy for introducing twinning in magnetic nanoparticle systems remains a grand challenge and unexplored to date. This is important to control the magnetic properties of iron oxide nanoparticles via the control of internal structural characteristics (i.e. the number of defects or twinned planes in the nanoparticles). The present work, for the first time, demonstrates how a judicious choice of bulkier ligands, based on alkylammonium halides, can be used to control the rate of the reaction and, thus, the high yield ( > 75%) formation of novel multiply twinned (polycrystalline decahedral and singly twinned) and untwinned (single crystalline octahedra and cubes) iron oxide nanoparticles. Based on new mechanistic understanding presented in this work, we discovered the enhancement and suppression of twinned structure within magnetic nanoparticles at low and high rate of the reaction, respectively. The multiply twinned magnetic nanoparticles show superior coercivity, higher cellular uptake, and enhanced magnetic actuation ability compared to untwinned nanoparticles of similar sizes. Overall, our work represents a paradigm shift in magnetic nanomaterials by providing new mechanistic insights, and guidance for controlling twinning and morphologies across a range of magnetic nanomaterials. This will ultimately allow us to tailor the magnetic properties through engineering the number of defects or twinning and will also have broad implications in nanotechnology, materials science, and engineering. (c) 2021 Elsevier Ltd. All rights reserved.
引用
收藏
页数:12
相关论文
共 79 条
[1]   Effect of Nanoparticle Surface Charge at the Plasma Membrane and Beyond [J].
Arvizo, Rochelle R. ;
Miranda, Oscar R. ;
Thompson, Michael A. ;
Pabelick, Christina M. ;
Bhattacharya, Resham ;
Robertson, J. David ;
Rotello, Vincent M. ;
Prakash, Y. S. ;
Mukherjee, Priyabrata .
NANO LETTERS, 2010, 10 (07) :2543-2548
[2]   Magnetic iron oxide nanoparticles as T1 contrast agents for magnetic resonance imaging [J].
Bao, Y. ;
Sherwood, J. A. ;
Sun, Z. .
JOURNAL OF MATERIALS CHEMISTRY C, 2018, 6 (06) :1280-1290
[3]   Advanced cell therapies: targeting, tracking and actuation of cells with magnetic particles [J].
Connell, John J. ;
Patrick, P. Stephen ;
Yu, Yichao ;
Lythgoe, Mark F. ;
Kalber, Tammy L. .
REGENERATIVE MEDICINE, 2015, 10 (06) :757-772
[4]   Colloidal synthesis and characterization of tetrapod-shaped magnetic nanocrystals [J].
Cozzoli, P. Davide ;
Snoeck, Etienne ;
Garcia, Miguel Angel ;
Giannini, Cinzia ;
Guagliardi, Antonietta ;
Cervellino, Antonio ;
Gozzo, Fabia ;
Hernando, Antonio ;
Achterhold, Klaus ;
Ciobanu, Nelica ;
Parak, Fritz G. ;
Cingolani, Roberto ;
Manna, Liberato .
NANO LETTERS, 2006, 6 (09) :1966-1972
[5]   Size-dependent properties of magnetic iron oxide nanocrystals [J].
Demortiere, A. ;
Panissod, P. ;
Pichon, B. P. ;
Pourroy, G. ;
Guillon, D. ;
Donnio, B. ;
Begin-Colin, S. .
NANOSCALE, 2011, 3 (01) :225-232
[6]  
Du H., 2018, GPA GEOMETRICAL PHAS
[7]   Magnetic iron oxide nanoparticles as drug carriers: preparation, conjugation and delivery [J].
El-Boubbou, Kheireddine .
NANOMEDICINE, 2018, 13 (08) :929-952
[8]   Low Oxidation State and Enhanced Magnetic Properties Induced by Raspberry Shaped Nanostructures of Iron Oxide [J].
Gerber, Olivier ;
Pichon, Benoit P. ;
Ulhaq, Corinne ;
Greneche, Jean-Marc ;
Lefevre, Christophe ;
Florea, Ileana ;
Ersen, Ovidiu ;
Begin, Dominique ;
Lemonnier, Sebastien ;
Barraud, Elodie ;
Begin-Colin, Sylvie .
JOURNAL OF PHYSICAL CHEMISTRY C, 2015, 119 (43) :24665-24673
[9]   The effect of particle design on cellular internalization pathways [J].
Gratton, Stephanie E. A. ;
Ropp, Patricia A. ;
Pohlhaus, Patrick D. ;
Luft, J. Christopher ;
Madden, Victoria J. ;
Napier, Mary E. ;
DeSimone, Joseph M. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2008, 105 (33) :11613-11618
[10]  
Groeneveld E., 2014, NANOPARTICLES WORKHO, P145