Mechanobiological Approach to Design and Optimize Bone Tissue Scaffolds 3D Printed with Fused Deposition Modeling: A Feasibility Study

被引:36
作者
Percoco, Gianluca [1 ]
Uva, Antonio Emmanuele [1 ]
Fiorentino, Michele [1 ]
Gattullo, Michele [1 ]
Manghisi, Vito Modesto [1 ]
Boccaccio, Antonio [1 ]
机构
[1] Politecn Bari, Dipartimento Meccan Matemat & Management, Via E Orabona 4, I-70126 Bari, Italy
关键词
tissue engineering; biomaterials; mechanobiology; scaffold design; geometry optimization; CELL POROUS BIOMATERIALS; MECHANICAL-PROPERTIES; ELASTIC PROPERTIES; FINITE-ELEMENT; UNIT CELLS; DIFFERENTIATION; REGENERATION; FABRICATION; SIMULATION; LOAD;
D O I
10.3390/ma13030648
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In spite of the rather large use of the fused deposition modeling (FDM) technique for the fabrication of scaffolds, no studies are reported in the literature that optimize the geometry of such scaffold types based on mechanobiological criteria. We implemented a mechanobiology-based optimization algorithm to determine the optimal distance between the strands in cylindrical scaffolds subjected to compression. The optimized scaffolds were then 3D printed with the FDM technique and successively measured. We found that the difference between the optimized distances and the average measured ones never exceeded 8.27% of the optimized distance. However, we found that large fabrication errors are made on the filament diameter when the filament diameter to be realized differs significantly with respect to the diameter of the nozzle utilized for the extrusion. This feasibility study demonstrated that the FDM technique is suitable to build accurate scaffold samples only in the cases where the strand diameter is close to the nozzle diameter. Conversely, when a large difference exists, large fabrication errors can be committed on the diameter of the filaments. In general, the scaffolds realized with the FDM technique were predicted to stimulate the formation of amounts of bone smaller than those that can be obtained with other regular beam-based scaffolds.
引用
收藏
页数:20
相关论文
共 63 条
[1]   Mechanical behavior of regular open-cell porous biomaterials made of diamond lattice unit cells [J].
Ahmadi, S. M. ;
Campoli, G. ;
Yavari, S. Amin ;
Sajadi, B. ;
Wauthle, R. ;
Schrooten, J. ;
Weinans, H. ;
Zadpoor, A. A. .
JOURNAL OF THE MECHANICAL BEHAVIOR OF BIOMEDICAL MATERIALS, 2014, 34 :106-115
[2]   Additively Manufactured Open-Cell Porous Biomaterials Made from Six Different Space-Filling Unit Cells: The Mechanical and Morphological Properties [J].
Ahmadi, Seyed Mohammad ;
Yavari, Saber Amin ;
Wauthle, Ruebn ;
Pouran, Behdad ;
Schrooten, Jan ;
Weinans, Harrie ;
Zadpoor, Amir A. .
MATERIALS, 2015, 8 (04) :1871-1896
[3]   Bone ingrowth simulation for a concept glenoid component design [J].
Andreykiv, A ;
Prendergast, PJ ;
van Keulen, F ;
Swieszkowski, W ;
Rozing, PM .
JOURNAL OF BIOMECHANICS, 2005, 38 (05) :1023-1033
[4]   A mathematical framework to study the effects of growth factor influences on fracture healing [J].
Bailón-Plaza, A ;
van der Meulen, MCH .
JOURNAL OF THEORETICAL BIOLOGY, 2001, 212 (02) :191-209
[5]   Osteogenesis by foamed and 3D-printed nanostructured calcium phosphate scaffolds: Effect of pore architecture [J].
Barba, Albert ;
Maazouz, Yassine ;
Diez-Escudero, Anna ;
Rappe, Katrin ;
Espanol, Montserrat ;
Montufar, Edgar B. ;
Ohman-Magi, Caroline ;
Persson, Cecilia ;
Fontecha, Pedro ;
Manzanares, Maria-Cristina ;
Franch, Jordi ;
Ginebra, Maria-Pau .
ACTA BIOMATERIALIA, 2018, 79 :135-147
[6]   BioCell Printing: Integrated automated assembly system for tissue engineering constructs [J].
Bartolo, P. ;
Domingos, M. ;
Gloria, A. ;
Ciurana, J. .
CIRP ANNALS-MANUFACTURING TECHNOLOGY, 2011, 60 (01) :271-274
[7]   The influence of expansion rates on mandibular distraction osteogenesis: A computational analysis [J].
Boccaccio, A. ;
Pappalettere, C. ;
Kelly, D. J. .
ANNALS OF BIOMEDICAL ENGINEERING, 2007, 35 (11) :1940-1960
[8]   Finite Element Method (FEM), Mechanobiology and Biomimetic Scaffolds in Bone Tissue Engineering [J].
Boccaccio, A. ;
Ballini, A. ;
Pappalettere, C. ;
Tullo, D. ;
Cantore, S. ;
Desiate, A. .
INTERNATIONAL JOURNAL OF BIOLOGICAL SCIENCES, 2011, 7 (01) :112-132
[9]   Optimal Load for Bone Tissue Scaffolds with an Assigned Geometry [J].
Boccaccio, Antonio ;
Uva, Antonio E. ;
Fiorentino, Michele ;
Monno, Giuseppe ;
Ballini, Andrea ;
Desiate, Apollonia .
INTERNATIONAL JOURNAL OF MEDICAL SCIENCES, 2018, 15 (01) :16-22
[10]   Rhombicuboctahedron unit cell based scaffolds for bone regeneration: geometry optimization with a mechanobiology - driven algorithm [J].
Boccaccio, Antonio ;
Fiorentino, Michele ;
Uva, Antonio E. ;
Laghetti, Luca N. ;
Monno, Giuseppe .
MATERIALS SCIENCE & ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2018, 83 :51-66