Highly efficient mixed-halide mixed-cation perovskite solar cells based on rGO-TiO2 composite nanofibers

被引:35
|
作者
Patil, Jyoti V. [1 ,2 ]
Mali, Sawanta S. [2 ]
Patil, Akhilesh P. [4 ]
Patil, Pramod S. [3 ,4 ]
Hong, Chang Kook [1 ,2 ]
机构
[1] Chonnam Natl Univ, Optoelect Convergence Res Ctr, Gwangju 61186, South Korea
[2] Chonnam Natl Univ, Dept Adv Chem Engn, Polymer Energy Mat Lab, Gwangju 61186, South Korea
[3] Shivaji Univ, Dept Phys, Thin Film Mat Lab, Kolhapur 416004, Maharashtra, India
[4] Shivaji Univ, Sch Nanosci & Technol, Kolhapur 416004, Maharashtra, India
基金
新加坡国家研究基金会;
关键词
Perovskite solar cells; Electron transporting materials; Role of rGO in TiO2 nanofibers; Large grain size; High-efficiency; TIO2; NANOFIBERS; RUTILE TIO2; GRAPHENE; PERFORMANCE; OXIDE; NANOCOMPOSITES; LAYERS;
D O I
10.1016/j.energy.2019.116396
中图分类号
O414.1 [热力学];
学科分类号
摘要
In this investigation, the electrospun reduced graphene oxide-titanium oxide composite nanofibers as an electron transporting materials have been employed for the perovskite solar cells. The synthesized electron transporting materials have been used for the fabrication of mixed-cation lead mixed-halide (FAPbI(3))(0.85)(MAPbBr(3))(0.15) perovskite solar cells. The influence of reduced graphene oxide on titanium oxide nanofibers and their morphological and electronic properties have been investigated in detail. The optimized device having FTO/Bl-TiO2/rGO(4)-TiO2/(FAPbI(3))(0.85)(MAPbBr(3))(0.15)/spiro-MeOTAD/Au configuration exhibited a eta = 17.66% power conversion efficiency with an open circuit voltage of 1.070 V, short circuit current density of 22.16 mAcm(-2) and fill factor of 0.754. This obtained efficiency is much higher than that of mesoporous-titanium oxide (14.39%), pristine-titanium oxide nanofibers (15.82%) and other reduced graphene oxide-titanium oxide composite nanofibers based electron transporting materials. (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Bulk recrystallization for efficient mixed-cation mixed-halide perovskite solar cells
    Lin, Liangyou
    Wang, Jacob Tse-Wei
    Jones, Timothy W.
    Grigore, Mihaela
    Cook, Andre
    deQuilettes, Dane W.
    Brenes, Roberto
    Duck, Benjamin C.
    Anderson, Kenrick F.
    Duffy, Noel W.
    Wenger, Bernard
    Bulovic, Vladimir
    Pu, Jian
    Li, Jian
    Chi, Bo
    Snaith, Henry J.
    Wilson, Gregory J.
    JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (44) : 25511 - 25520
  • [2] A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells
    McMeekin, David P.
    Sadoughi, Golnaz
    Rehman, Waqaas
    Eperon, Giles E.
    Saliba, Michael
    Hoerantner, Maximilian T.
    Haghighirad, Amir
    Sakai, Nobuya
    Korte, Lars
    Rech, Bernd
    Johnston, Michael B.
    Herz, Laura M.
    Snaith, Henry J.
    SCIENCE, 2016, 351 (6269) : 151 - 155
  • [3] Efficient Wide-Bandgap Mixed-Cation and Mixed-Halide Perovskite Solar Cells by Vacuum Deposition
    Gil-Escrig, Lidon
    Dreessen, Chris
    Palazon, Francisco
    Hawash, Zafer
    Moons, Ellen
    Albrecht, Steve
    Sessolo, Michele
    Bolink, Henk J.
    ACS ENERGY LETTERS, 2021, 6 (02) : 827 - 836
  • [4] Compact layer free mixed-cation lead mixed-halide perovskite solar cells
    Hu, Zhelu
    Xiang, Hengyang
    Sebag, Mathilde Schoenauer
    Billot, Laurent
    Aigouy, Lionel
    Chen, Zhuoying
    CHEMICAL COMMUNICATIONS, 2018, 54 (21) : 2623 - 2626
  • [5] Halide Remixing under Device Operation Imparts Stability on Mixed-Cation Mixed-Halide Perovskite Solar Cells
    Ruggeri, Edoardo
    Anaya, Miguel
    Galkowski, Krzysztof
    Abfalterer, Anna
    Chiang, Yu-Hsien
    Ji, Kangyu
    Andaji-Garmaroudi, Zahra
    Stranks, Samuel D.
    ADVANCED MATERIALS, 2022, 34 (36)
  • [6] Mixed-cation, mixed-halide perovskite ToF-SIMS spectra
    Taddei, Margherita
    Graham, Daniel J.
    SURFACE SCIENCE SPECTRA, 2024, 31 (01):
  • [7] High-performance mixed-cation mixed-halide perovskite solar cells enabled by a facile intermediate engineering technique
    Mateen, Muhammad
    Arain, Zulqarnain
    Liu, Xuepeng
    Liu, Chen
    Yang, Yi
    Ding, Yong
    Ma, Shuang
    Ren, Yingke
    Wu, Yunzhao
    Tao, Ye
    Shi, Pengju
    Dai, Songyuan
    JOURNAL OF POWER SOURCES, 2020, 448
  • [8] Temperature behaviour of mixed-cation mixed-halide perovskite solar cells. Analysis of recombination mechanisms and ion migration
    Lopez-Gonzalez, Mari Carmen
    del Pozo, Gonzalo
    Arredondo, Belen
    Delgado, Silvia
    Martin-Martin, Diego
    Garcia-Pardo, Marina
    Romero, Beatriz
    ORGANIC ELECTRONICS, 2023, 120
  • [9] LiI doping of mixed-cation mixed-halide perovskite solar cells: Defect passivation, controlled crystallization and transient ionic response
    Tabi, G. D.
    Pham, H. T.
    Zhan, H.
    Walter, D.
    Mayon, A. O.
    Peng, J.
    Duong, T.
    Shehata, Mohammed M.
    Shen, H.
    Duan, L.
    Mozaffari, N.
    Li, L.
    Mahmud, M. A.
    Nguyen, H. T.
    Weber, K.
    Catchpole, K. R.
    White, T. P.
    MATERIALS TODAY PHYSICS, 2022, 27
  • [10] Efficient and Air-Stable Mixed-Cation Lead Mixed-Halide Perovskite Solar Cells with n-Doped Organic Electron Extraction Layers
    Wang, Zhiping
    McMeekin, David P.
    Sakai, Nobuya
    van Reenen, Stephan
    Wojciechowski, Konrad
    Patel, Jay B.
    Johnston, Michael B.
    Snaith, Henry J.
    ADVANCED MATERIALS, 2017, 29 (05)