Space-time reference with an optical link

被引:24
作者
Berceau, P. [1 ,2 ]
Taylor, M. [3 ]
Kahn, J. [3 ]
Hollberg, L. [1 ,2 ]
机构
[1] Stanford Univ, Dept Phys, Stanford, CA 94305 USA
[2] Stanford Univ, Hansen Expt Phys Lab, Stanford, CA 94305 USA
[3] Stanford Univ, Dept Elect Engn, Stanford, CA 94305 USA
关键词
time transfer; space-time reference; relativity tests; atomic clocks; geodesy; FREQUENCY; LASER; UNCERTAINTY; GRAVITY; NETWORK; CLOCKS; TESTS; DELAY; EARTH;
D O I
10.1088/0264-9381/33/13/135007
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We describe a concept for realizing a high performance space-time reference using a stable atomic clock in a precisely defined orbit and synchronizing the orbiting clock to high-accuracy atomic clocks on the ground. The synchronization would be accomplished using a two-way lasercom link between ground and space. The basic approach is to take advantage of the highestperformance cold-atom atomic clocks at national standards laboratories on the ground and to transfer that performance to an orbiting clock that has good stability and that serves as a ` frequency-flywheel' over time-scales of a few hours. The two-way lasercom link would also provide precise range information and thus precise orbit determination. With a well-defined orbit and a synchronized clock, the satellite could serve as a high-accuracy space-time reference, providing precise time worldwide, a valuable reference frame for geodesy, and independent high-accuracy measurements of GNSS clocks. Under reasonable assumptions, a practical system would be able to deliver picosecond timing worldwide and millimeter orbit determination, and could serve as an enabling subsystem for other proposed space-gravity missions, which are briefly reviewed.
引用
收藏
页数:23
相关论文
共 100 条
[81]   Time transfer by laser link: a complete analysis of the uncertainty budget [J].
Samain, E. ;
Exertier, P. ;
Courde, C. ;
Fridelance, P. ;
Guillemot, P. ;
Laas-Bourez, M. ;
Torre, J-M .
METROLOGIA, 2015, 52 (02) :423-432
[82]   Einstein Gravity Explorer-a medium-class fundamental physics mission [J].
Schiller, S. ;
Tino, G. M. ;
Gill, P. ;
Salomon, C. ;
Sterr, U. ;
Peik, E. ;
Nevsky, A. ;
Goerlitz, A. ;
Svehla, D. ;
Ferrari, G. ;
Poli, N. ;
Lusanna, L. ;
Klein, H. ;
Margolis, H. ;
Lemonde, P. ;
Laurent, P. ;
Santarelli, G. ;
Clairon, A. ;
Ertmer, W. ;
Rasel, E. ;
Mueller, J. ;
Iorio, L. ;
Laemmerzahl, C. ;
Dittus, H. ;
Gill, E. ;
Rothacher, M. ;
Flechner, F. ;
Schreiber, U. ;
Flambaum, V. ;
Ni, Wei-Tou ;
Liu, Liang ;
Chen, Xuzong ;
Chen, Jingbiao ;
Gao, Kelin ;
Cacciapuoti, L. ;
Holzwarth, R. ;
Hess, M. P. ;
Schaefer, W. .
EXPERIMENTAL ASTRONOMY, 2009, 23 (02) :573-610
[83]  
Schiller S, 2012, P EFTF
[84]  
Schlie J, 2014, GRAVITY GEOID HEIGHT, P141
[85]   Feasibility Study of a Future Satellite Gravity Mission Using GEO-LEO Line-of-Sight Observations [J].
Schlie, Jakob ;
Murboeck, Michael ;
Pail, Roland .
GRAVITY, GEOID AND HEIGHT SYSTEMS, 2014, 141 :123-130
[86]   Optical phase noise from atmospheric fluctuations and its impact on optical time-frequency transfer [J].
Sinclair, L. C. ;
Giorgetta, F. R. ;
Swann, W. C. ;
Baumann, E. ;
Coddington, I. ;
Newbury, N. R. .
PHYSICAL REVIEW A, 2014, 89 (02)
[87]  
Singh S, 2015, P ISSFD15 MUN GERM 1
[88]  
Stevens M, 2015, SCPNT S STANF CA 12
[89]  
Toyoshima M, 2007, P 25 AIAA ICSS C
[90]   Advancing tests of relativistic gravity via laser ranging to Phobos [J].
Turyshev, Slava G. ;
Farr, William ;
Folkner, William M. ;
Girerd, Andre R. ;
Hemmati, Hamid ;
Murphy, Thomas W., Jr. ;
Williams, James G. ;
Degnan, John J. .
EXPERIMENTAL ASTRONOMY, 2010, 28 (2-3) :209-249