Learning from Class-imbalanced Data with a Model-Agnostic Framework for Machine Intelligent Diagnosis

被引:47
作者
Wu, Jingyao [1 ]
Zhao, Zhibin [1 ]
Sun, Chuang [1 ]
Yan, Ruqiang [1 ]
Chen, Xuefeng [1 ]
机构
[1] Xi An Jiao Tong Univ, Sch Mech Engn, Xian 710049, Shaanxi, Peoples R China
关键词
Class imbalance; Fault diagnosis; Deep learning; Neural networks; Imbalanced data; Rotating machinery; FAULT-DIAGNOSIS; BEARING; CLASSIFICATION; EXTRACTION; PREDICTION; SMOTE;
D O I
10.1016/j.ress.2021.107934
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Considering the difficulty of data acquisition in industry, especially for failure data of large-scale equipment, classification with these class-imbalanced datasets can lead to the problems of minority categories overfitting and majority categories domination. A model-agnostic framework towards class-imbalanced fault diagnosis requirement is proposed to systematically alleviate these problems. Four sub-modules, including Time-series Data Augmentation, Data-Rebalanced sampler, Balanced Margin Loss, and classifier with Dynamic Decision Boundary Balancing are performed to improve recognition accuracy of minority categories without performance degradation on majority categories. Meanwhile, the framework is compatible with general neural networks and provides flexible model candidates to meet the need of feature extraction for different data types. Three case studies on public datasets demonstrate that proposed framework outperformed various state-of-the-art methods.
引用
收藏
页数:11
相关论文
共 59 条
[1]   A reliable technique for remaining useful life estimation of rolling element bearings using dynamic regression models [J].
Ahmad, Wasim ;
Khan, Sheraz Ali ;
Islam, M. M. Manjurul ;
Kim, Jong-Myon .
RELIABILITY ENGINEERING & SYSTEM SAFETY, 2019, 184 :67-76
[2]   A novel bearing intelligent fault diagnosis framework under time-varying working conditions using recurrent neural network [J].
An, Zenghui ;
Li, Shunming ;
Wang, Jinrui ;
Jiang, Xingxing .
ISA TRANSACTIONS, 2020, 100 :155-170
[3]   A systematic study of the class imbalance problem in convolutional neural networks [J].
Buda, Mateusz ;
Maki, Atsuto ;
Mazurowski, Maciej A. .
NEURAL NETWORKS, 2018, 106 :249-259
[4]  
Cao KD, 2019, ADV NEUR IN, V32
[5]   Preprocessing-Free Gear Fault Diagnosis Using Small Datasets With Deep Convolutional Neural Network-Based Transfer Learning [J].
Cao, Pei ;
Zhang, Shengli ;
Tang, Jiong .
IEEE ACCESS, 2018, 6 :26241-26253
[6]   SMOTE: Synthetic minority over-sampling technique [J].
Chawla, Nitesh V. ;
Bowyer, Kevin W. ;
Hall, Lawrence O. ;
Kegelmeyer, W. Philip .
2002, American Association for Artificial Intelligence (16)
[7]   Multisensor Feature Fusion for Bearing Fault Diagnosis Using Sparse Autoencoder and Deep Belief Network [J].
Chen, Zhuyun ;
Li, Weihua .
IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2017, 66 (07) :1693-1702
[8]   A novel Switching Unscented Kalman Filter method for remaining useful life prediction of rolling bearing [J].
Cui, Lingli ;
Wang, Xin ;
Xu, Yonggang ;
Jiang, Hong ;
Zhou, Jianping .
MEASUREMENT, 2019, 135 :678-684
[9]   Class-Balanced Loss Based on Effective Number of Samples [J].
Cui, Yin ;
Jia, Menglin ;
Lin, Tsung-Yi ;
Song, Yang ;
Belongie, Serge .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :9260-9269
[10]   Remaining useful life estimation using deep metric transfer learning for kernel regression [J].
Ding, Yifei ;
Jia, Minping ;
Miao, Qiuhua ;
Huang, Peng .
RELIABILITY ENGINEERING & SYSTEM SAFETY, 2021, 212