Stabilization of Li Metal Anode in DMSO-Based Electrolytes via Optimization of Salt-Solvent Coordination for Li-O2 Batteries

被引:119
作者
Liu, Bin [1 ]
Xu, Wu [1 ]
Yan, Pengfei [2 ]
Kim, Sun Tai [1 ,3 ]
Engelhard, Mark H. [2 ]
Sun, Xiuliang [4 ]
Mei, Donghai [4 ]
Cho, Jaephil [3 ]
Wang, Chong-Min [2 ]
Zhang, Ji-Guang [1 ]
机构
[1] Pacific Northwest Natl Lab, Energy & Environm Directorate, Richland, WA 99354 USA
[2] Pacific Northwest Natl Lab, Environm & Mol Sci Lab, Richland, WA 99354 USA
[3] Ulsan Natl Inst Sci & Technol, Sch Energy & Chem Engn, Dept Energy Engn, Ulsan 689798, South Korea
[4] Pacific Northwest Natl Lab, Phys & Computat Sci Directorate, Richland, WA 99354 USA
关键词
dimethyl sulfoxide; electrolyte; high concentration; lithium–oxygen batteries; stability;
D O I
10.1002/aenm.201602605
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The conventional electrolyte of 1 M lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) in dimethyl sulfoxide (DMSO) is unstable against the Li metal anode and therefore cannot be used directly in practical Li-O-2 batteries. Here, we demonstrate that a highly concentrated electrolyte based on LiTFSI in DMSO (with a molar ratio of 1:3) can greatly improve the stability of the Li metal anode against DMSO and significantly improve the cycling stability of Li-O-2 batteries. This highly concentrated electrolyte contains no free DMSO solvent molecules, but only complexes of (TFSI-)(a)-Li+-(DMSO)(b) (where a + b = 4), and thus enhances their stability with Li metal anodes. In addition, such salt-solvent complexes have higher Gibbs activation energy barriers than the free DMSO solvent molecules, indicating improved stability of the electrolyte against the attack of superoxide radical anions. Therefore, the stability of this highly concentrated electrolyte at both Li metal anodes and carbon-based air electrodes has been greatly enhanced, resulting in improved cycling performance of Li-O-2 batteries. The fundamental stability of the electrolyte in the absence of free-solvent against the chemical and electrochemical reactions can also be used to enhance the stability of other electrochemical systems.
引用
收藏
页数:10
相关论文
共 45 条
[1]  
Bruce P.G., Freunberger S.A., Hardwick L.J., Tarascon J.M., Nat. Mater., 11, (2012)
[2]  
Younesi R., Veith G.M., Johansson P., Edstrom K., Vegge T., Energy Environ. Sci., 8, (2015)
[3]  
Li Y., Wang X., Dong S., Chen X., Cui G., Adv. Energy Mater., 6, (2016)
[4]  
Jung H.-G., Hassoun J., Park J.B., Sun Y.K., Scrosati B., Nat. Chem., 4, (2012)
[5]  
Nasybulin E., Xu W., Engelhard M.H., Nie Z., Li X.S., Zhang J.-G., J. Power Sources, 243, (2013)
[6]  
Xu W., Hu J., Engelhard M.H., Towne S.A., Hardy J.S., Xiao J., Feng J., Hu M.Y., Zhang J., Ding F., Gross M.E., Zhang J.-G., J. Power Sources, 215, (2012)
[7]  
Luntz A.C., McCloskey B.D., Chem. Rev., 114, (2014)
[8]  
McCloskey B.D., Bethune D.S., Shelby R.M., Girishkumar G., Luntz A.C., J. Phys. Chem. Lett., 2, (2011)
[9]  
Freunberger S.A., Chen Y., Peng Z., Griffin J.M., Hardwick L.J., Barde F., Novak P., Bruce P.G., J. Am. Chem. Soc., 133, (2011)
[10]  
Nasybulin E., Xu W., Engelhard M.H., Nie Z., Burton S.D., Cosimbescu L., Gross M.E., Zhang J.-G., J. Phys. Chem. C, 117, (2013)