Photopolymerization kinetics of methacrylate dental resins

被引:288
作者
Dickens, SH [1 ]
Stansbury, JW [1 ]
Choi, KM [1 ]
Floyd, CJE [1 ]
机构
[1] Natl Inst Stand & Technol, Paffenbarger Res Ctr, Amer Dent Assoc Fdn, Gaithersburg, MD 20899 USA
关键词
D O I
10.1021/ma021675k
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
The photopolymerization kinetics of typical dental dimethacrylate monomers were studied by differential photocalorimetry. Increasing proportions of the low-viscosity diluent monomer triethylene glycol dimethacrylate (TEGDMA) were added to either Bis-GMA (2,2-bis[p-(2'-hydroxy-3'-methacryloxy-propoxy)phenylene] propane), EBADMA (ethoxylated bisphenol A dimethacrylate), or UDMA (1,6-bis-(methacryloxy-2-ethoxycarbonylamino)-2,4,4-trimethylhexane) to provide three base resins that differed in their hydrogen-bonding potential and, therefore, resulted in compositions covering a broad range of viscosities. When compared at similar diluent concentrations, UDMA resins were significantly more reactive than Bis-GMA and EBADMA resins. At higher diluent concentrations, EBADMA resins provided the lowest photopolymerization reactivities. Optimum reactivities in the UDMA and EBADMA resin systems were obtained with the addition of relatively small amounts of TEGDMA, whereas the Bis-GMA/TEGDMA resin system required near equivalent mole ratios for highest reactivity. The hydrogen-bonding interactions, which substantially influence the Bis-GMA and UDMA resin series, were examined by Fourier transform infrared spectroscopy and resin viscosity. Synergistic effects of base and diluent monomer on the polymerization rate and the final conversion were found for the two base resins having hydrogen-bonding interactions. The structures of the individual monomers and, consequently, the resin viscosities of the comonomer mixtures strongly influence both the rate and the extent of conversion of the photopolymerization process.
引用
收藏
页码:6043 / 6053
页数:11
相关论文
共 48 条