LEARNING OF LINEAR VIDEO PREDICTION MODELS IN A MULTI-MODAL FRAMEWORK FOR ANOMALY DETECTION

被引:4
作者
Slavic, Giulia [1 ]
Alemaw, Abrham Shiferaw [1 ]
Marcenaro, Lucio [1 ]
Regazzoni, Carlo [1 ]
机构
[1] Univ Genoa, DITEN, Genoa, Italy
来源
2021 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP) | 2021年
关键词
Variational Autoencoder; anomaly detection; Kalman Filter; data fusion; Dynamic Bayesian Networks;
D O I
10.1109/ICIP42928.2021.9506049
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper proposes a method for performing future-frame prediction and anomaly detection on video data in a multi-modal framework based on Dynamic Bayesian Networks (DBNs). In particular, odometry data and video data from a moving vehicle are fused. A Markov Jump Particle Filter (MJPF) is learned on odometry data, and its features are used to aid the learning of a Kalman Variational Autoencoder (KVAE) on video data. Consequently, anomaly detection can be performed on video data using the learned model. We evaluate the proposed method using multi-modal data from a vehicle performing different tasks in a closed environment.
引用
收藏
页码:1569 / 1573
页数:5
相关论文
共 25 条
[1]  
[Anonymous], 2011, LECT NOTES STANFORD
[2]  
Baydoun M, 2018, 2018 21ST INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION), P2606, DOI 10.23919/ICIF.2018.8455592
[3]  
Becker-Ehmck P., 2019, P 36 INT C MACHINE L, P553
[4]  
Damasio A., 1999, FEELING WHAT HAPPENS
[5]   Multisensor data fusion for autonomous vehicle navigation in risky environments [J].
Foresti, GL ;
Regazzoni, CS .
IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2002, 51 (05) :1165-1185
[6]  
Fraccaro Marco, 2017, ADV NEUR IN, V30
[7]   Cognitive Dynamics: From Attractors to Active Inference [J].
Friston, Karl ;
Sengupta, Biswa ;
Auletta, Gennaro .
PROCEEDINGS OF THE IEEE, 2014, 102 (04) :427-445
[8]  
Fritzke B., 1995, Advances in Neural Information Processing Systems 7, P625
[9]  
Goodfellow IJ, 2014, ADV NEUR IN, V27, P2672
[10]   On Cognitive Dynamic Systems: Cognitive Neuroscience and Engineering Learning From Each Other [J].
Haykin, Simon ;
Fuster, Joaquin M. .
PROCEEDINGS OF THE IEEE, 2014, 102 (04) :608-628