Parameter estimation of bilinear systems based on an adaptive particle swarm optimization

被引:87
作者
Modares, Hamidreza [2 ]
Alfi, Alireza [1 ]
Sistani, Mohammad-Bagher Naghibi [2 ]
机构
[1] Shahrood Univ Technol, Fac Elect & Robot Engn, Shahrood 3619995161, Iran
[2] Ferdowsi Univ Mashhad, Dept Elect Engn, Mashhad 917751111, Iran
关键词
Bilinear systems; Parameter estimation; Adaptive particle swarm optimization; Inertia weight; Optimization algorithms; IDENTIFICATION; DESIGN;
D O I
10.1016/j.engappai.2010.05.003
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Bilinear models can approximate a large class of nonlinear systems adequately and usually with considerable parsimony in the number of coefficients required. This paper presents the application of Particle Swarm Optimization (PSO) algorithm to solve both offline and online parameter estimation problem for bilinear systems. First, an Adaptive Particle Swarm Optimization (APSO) is proposed to increase the convergence speed and accuracy of the basic particle swarm optimization to save tremendous computation time. An illustrative example for the modeling of bilinear systems is provided to confirm the validity, as compared with the Genetic Algorithm (GA), Linearly Decreasing Inertia Weight PSO (LDW-PSO), Nonlinear Inertia Weight PSO (NDW-PSO) and Dynamic Inertia Weight PSO (DIW-PSO) in terms of parameter accuracy and convergence speed. Second. APSO is also improved to detect and determine varying parameters. In this case, a sentry particle is introduced to detect any changes in system parameters. Simulation results confirm that the proposed algorithm is a good promising particle swarm optimization algorithm for online parameter estimation. (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1105 / 1111
页数:7
相关论文
共 27 条
[11]  
GOLDKBERG D, 1989, GENETIC ALGORITHMS S
[12]  
HUA XM, 1990, MODELING CONTROL BIL
[13]   A dynamic inertia weight particle swarm optimization algorithm [J].
Jiao, Bin ;
Lian, Zhigang ;
Gu, Xingsheng .
CHAOS SOLITONS & FRACTALS, 2008, 37 (03) :698-705
[14]  
JUANG JG, 2003, P IEEE INT C CONTR A, P129
[15]  
Kennedy J. F., 2001, Swarm intelligence
[16]  
Kennedy James, 2002, P ICNN 95 INT C NEUR, V4, P1942
[17]   Estimation of the beach bar parameters using the genetic algorithms [J].
Koemuercue, Murat Ihsan ;
Tutkun, Nedim ;
Oezoelcer, Ismail Hakki ;
Akpmar, Adem .
APPLIED MATHEMATICS AND COMPUTATION, 2008, 195 (01) :49-60
[18]   Observers for bilinear systems with unknown inputs and application to superheater temperature control [J].
Lee, SH ;
Kong, J ;
Seo, JH .
CONTROL ENGINEERING PRACTICE, 1997, 5 (04) :493-506
[19]   A particle swarm optimization approach to nonlinear rational filter modeling [J].
Lin, Yih-Lon ;
Chang, Wei-Der ;
Hsieh, Jer-Guang .
EXPERT SYSTEMS WITH APPLICATIONS, 2008, 34 (02) :1194-1199
[20]  
Mohler R., 1991, NONLINEAR SYSTEMS AP