Machine Learning for Resource Management

被引:0
作者
Chen, Lydia [1 ,2 ]
机构
[1] Delft Univ Technol, Dept Comp Sci, Delft, Netherlands
[2] Ibm Zurich Res Lab, Zurich, Switzerland
来源
2019 18TH INTERNATIONAL SYMPOSIUM ON PARALLEL AND DISTRIBUTED COMPUTING (ISPDC 2019) | 2019年
关键词
D O I
暂无
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
The practice of collecting big performance data has changed how infrastructure providers model and manage the system in the past decade. There is a methodology shift from domain-knowledge based models, e.g., queuing and simulation, to data-driven models, e.g., machine learning. I will present such a game change for resource management from workload characterization, dependability prediction to sprinting policy, with examples from IBM datacenters. I will conclude the talk with future directions of performance models and challenging resource management problems in machine learning clusters.
引用
收藏
页码:XVI / XVI
页数:1
相关论文
共 50 条
[21]   Machine Learning for Radio Resource Management in Multibeam GEO Satellite Systems [J].
Ortiz-Gomez, Flor G. ;
Lei, Lei ;
Lagunas, Eva ;
Martinez, Ramon ;
Tarchi, Daniele ;
Querol, Jorge ;
Salas-Natera, Miguel A. ;
Chatzinotas, Symeon .
ELECTRONICS, 2022, 11 (07)
[22]   Applications of Machine Learning for Electronic Warfare Emitter Identification and Resource Management [J].
Casterline, Kyle A. ;
Watkins, Nicholas J. ;
Ward, Jon R. ;
Li, William ;
Thommana, Matthew J. .
Johns Hopkins APL Technical Digest (Applied Physics Laboratory), 2022, 36 (02) :121-140
[23]   Applications of Machine Learning for Electronic Warfare Emitter Identification and Resource Management [J].
Casterline, Kyle A. ;
Watkins, Nicholas J. ;
Ward, Jon R. ;
Li, William ;
Thommana, Matthew J. .
JOHNS HOPKINS APL TECHNICAL DIGEST, 2022, 36 (02) :121-140
[24]   Effective resource management using machine learning in medicine: an applied example [J].
Williams, Alan ;
Mekhail, Ann-Marie ;
Williams, James ;
McCord, Johanna ;
Buchan, Vanessa .
BMJ SIMULATION & TECHNOLOGY ENHANCED LEARNING, 2019, 5 (02) :85-90
[25]   A Novel Approach to Cloud Resource Management: Hybrid Machine Learning and Task Scheduling [J].
Zhou, Hong .
JOURNAL OF GRID COMPUTING, 2023, 21 (04)
[26]   DyRAM: Dynamic Data Allocation and Resource Management in Distributed Machine Learning Systems [J].
Tiwari, Vaibhavi ;
Thakkar, Rahul ;
Wang, Jiayin .
2024 IEEE 15TH ANNUAL UBIQUITOUS COMPUTING, ELECTRONICS & MOBILE COMMUNICATION CONFERENCE, UEMCON, 2024, :119-126
[27]   Exploring human resource management intelligence practices using machine learning models [J].
Indarapu S.R.K. ;
Vodithala S. ;
Kumar N. ;
Kiran S. ;
Reddy S.N. ;
Dorthi K. .
Journal of High Technology Management Research, 2023, 34 (02)
[28]   Integrating artificial intelligence and machine learning in hydrological modeling for sustainable resource management [J].
Marshall, Sebastian R. O. ;
Tran, Thanh-Nhan-Duc ;
Tapas, Mahesh R. ;
Nguyen, Binh Quang .
INTERNATIONAL JOURNAL OF RIVER BASIN MANAGEMENT, 2025,
[29]   A Novel Approach to Cloud Resource Management: Hybrid Machine Learning and Task Scheduling [J].
Hong Zhou .
Journal of Grid Computing, 2023, 21
[30]   Machine Learning-Assisted Competency Modeling for Human Resource Management Jobs [J].
Cao, Changfang ;
Zhang, Zhongying .
MOBILE INFORMATION SYSTEMS, 2022, 2022