Existence of positive ground state solutions for fractional Schrodinger equations with a general nonlinearity

被引:8
作者
Liu, Zhisu [1 ]
Ouyang, Zigen [1 ]
机构
[1] Univ South China, Sch Math & Phys, Hengyang, Peoples R China
关键词
Fractional Schrodinger equation; ground state solution; variational method; global compactness lemma; SCALAR FIELD-EQUATIONS; R-N; LAPLACIAN;
D O I
10.1080/00036811.2017.1307963
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the existence of positive ground state solutions for the nonlinear fractional Schrodinger equation: (-Delta)(alpha)u + V(x)u = f(u), in R-N, where N >= 2, alpha is an element of (0, 1), f is an element of C-1(R, R) is subcritical near infinity and superlinear near zero and satisfies the Berestycki-Lions condition. Using the monotonic trick established by Struwe-Jeanjean, the method of Pohozaev manifold and establishing a global compactness lemma, we show that the above problem has at least a positive ground state solution.
引用
收藏
页码:1154 / 1171
页数:18
相关论文
共 38 条
[1]  
Applebaum D., 2004, NOT AM MATH SOC, V51, P1320
[2]   A critical fractional equation with concave convex power nonlinearities [J].
Barrios, B. ;
Colorado, E. ;
Servadei, R. ;
Soria, F. .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2015, 32 (04) :875-900
[3]  
BERESTYCKI H, 1983, ARCH RATION MECH AN, V82, P313
[4]   A RELATION BETWEEN POINTWISE CONVERGENCE OF FUNCTIONS AND CONVERGENCE OF FUNCTIONALS [J].
BREZIS, H ;
LIEB, E .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1983, 88 (03) :486-490
[5]   Positive solutions of nonlinear problems involving the square root of the Laplacian [J].
Cabre, Xavier ;
Tan, Jinggang .
ADVANCES IN MATHEMATICS, 2010, 224 (05) :2052-2093
[6]   Ground state of scalar field equations involving a fractional Laplacian with general nonlinearity [J].
Chang, X. ;
Wang, Z-Q .
NONLINEARITY, 2013, 26 (02) :479-494
[7]   GROUND STATES OF SOME FRACTIONAL SCHRODINGER EQUATIONS ON RN [J].
Chang, Xiaojun .
PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2015, 58 (02) :305-321
[8]   Ground state solutions of asymptotically linear fractional Schrodinger equations [J].
Chang, Xiaojun .
JOURNAL OF MATHEMATICAL PHYSICS, 2013, 54 (06)
[9]   Bound state for the fractional Schrodinger equation with unbounded potential [J].
Cheng, Ming .
JOURNAL OF MATHEMATICAL PHYSICS, 2012, 53 (04)
[10]   Hitchhiker's guide to the fractional Sobolev spaces [J].
Di Nezza, Eleonora ;
Palatucci, Giampiero ;
Valdinoci, Enrico .
BULLETIN DES SCIENCES MATHEMATIQUES, 2012, 136 (05) :521-573