Thermally conducting polymer/nanocarbon and polymer/inorganic nanoparticle nanocomposite: a review

被引:51
作者
Kausar, Ayesha [1 ]
机构
[1] Quaid I Azam Univ, Natl Ctr Phys, Nanosci Div, Islamabad, Pakistan
来源
POLYMER-PLASTICS TECHNOLOGY AND MATERIALS | 2020年 / 59卷 / 08期
关键词
Polymer; nanocarbon; dispersion; dissipation; electronics; LOW-MASS FRACTION; BORON-NITRIDE; POLYMER COMPOSITES; MECHANICAL-PROPERTIES; ALUMINUM NITRIDE; EPOXY COMPOSITES; HEAT-CONDUCTION; NANODIAMOND; FILLER; FIBERS;
D O I
10.1080/25740881.2019.1708103
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
This review addresses fundamentals and progress in field of thermally conducting polymer/nanocarbon nanocomposite. Upsurge in thermal conductivity of materials may lead to rapid heat diffusion, which in turn may prevent degradation. Thermally conductive nanofillers (carbon nanotube, graphene, nanodiamond, inorganics) have been effectively employed to form desired nanocomposite. In polymer/nanocarbon nanocomposites, thermal conductivity depends on nanofiller type, dispersion, loading level, polymer nature, morphology, and crystallinity. Thermal conductivity parameter has been significantly considered in aerospace, automotive, electronics, and energy-related industries, where thermal dissipation has become a challenging problem. In future, it is desired to design high performance nanocomposites with manageable thermal conduction.
引用
收藏
页码:895 / 909
页数:15
相关论文
共 113 条
[1]   Finite element analysis of thermal conductivities of unidirectional multiphase composites [J].
Ahmadi, Masoud ;
Ansari, Reza ;
Hassanzadeh-Aghdam, Mohammad Kazem .
COMPOSITE INTERFACES, 2019, 26 (12) :1035-1055
[2]  
Anish M., 2019, INT J AMB ENERGY, P1
[3]   Electrically and thermally conductive elastomer/graphene nanocomposites by solution mixing [J].
Araby, Sherif ;
Meng, Qingshi ;
Zhang, Liqun ;
Kang, Hailan ;
Majewski, Peter ;
Tang, Youhong ;
Ma, Jun .
POLYMER, 2014, 55 (01) :201-210
[4]   A novel approach to electrically and thermally conductive elastomers using graphene [J].
Araby, Sherif ;
Zhang, Liqun ;
Kuan, Hsu-Chiang ;
Dai, Jia-Bin ;
Majewski, Peter ;
Ma, Jun .
POLYMER, 2013, 54 (14) :3663-3670
[5]   Nanowire-filled polymer composites with ultrahigh thermal conductivity [J].
Balachander, Nikhil ;
Seshadri, Indira ;
Mehta, Rutvik J. ;
Schadler, Linda S. ;
Borca-Tasciuc, Theo ;
Keblinski, Pawel ;
Ramanath, Ganpati .
APPLIED PHYSICS LETTERS, 2013, 102 (09)
[6]  
BATURK E, 2018, POLYM-PLAST TECHNOL, V57, P276
[7]   Carbon Nanotube Microarchitectures for Enhanced Thermal Conduction at Ultra low Mass Fraction in Polymer Composites [J].
Bozlar, Michael ;
He, Delong ;
Bai, Jinbo ;
Chalopin, Yann ;
Mingo, Natalio ;
Volz, Sebastian .
ADVANCED MATERIALS, 2010, 22 (14) :1654-+
[8]   Review of thermal conductivity in composites: Mechanisms, parameters and theory [J].
Burger, N. ;
Laachachi, A. ;
Ferriol, M. ;
Lutz, M. ;
Toniazzo, V. ;
Ruch, D. .
PROGRESS IN POLYMER SCIENCE, 2016, 61 :1-28
[9]   Improved Thermal Conductivity and Flame Retardancy in Polystyrene/Poly(vinylidene fluoride) Blends by Controlling Selective Localization and Surface Modification of SiC Nanoparticles [J].
Cao, Jian-Ping ;
Zhao, Xiaodong ;
Zhao, Jun ;
Zha, Jun-Wei ;
Hu, Guo-Hua ;
Dang, Zhi-Min .
ACS APPLIED MATERIALS & INTERFACES, 2013, 5 (15) :6915-6924
[10]   Thermal conductivity of polymer-based composites: Fundamentals and applications [J].
Chen, Hongyu ;
Ginzburg, Valeriy V. ;
Yang, Jian ;
Yang, Yunfeng ;
Liu, Wei ;
Huang, Yan ;
Du, Libo ;
Chen, Bin .
PROGRESS IN POLYMER SCIENCE, 2016, 59 :41-85