Depinning transition at the upper critical dimension

被引:11
|
作者
Fedorenko, AA [1 ]
Stepanow, S [1 ]
机构
[1] Univ Halle Wittenberg, Fachbereich Phys, D-06099 Halle An Der Saale, Germany
关键词
D O I
10.1103/PhysRevE.67.057104
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We study the effect of quenched random field disorder on a driven elastic interface close to the depinning transition at the upper critical dimension d(c)=4 using the functional renormalization group. We have found that the displacement correlation function behaves with distance x as (ln xLambda(0))(2/3) for large x. Slightly above the depinning transition the force-velocity characteristics are described by the equation vsimilar tof\ln f\(2/9), while the correlation length behaves as L(v)similar tof(-1/2)\ln f\(1/6), where f=F/F-c-1 is the reduced driving force.
引用
收藏
页码:1 / 057104
页数:4
相关论文
共 50 条
  • [21] The Upper Critical Dimension of the Abelian Sandpile Model
    V. B. Priezzhev
    Journal of Statistical Physics, 2000, 98 : 667 - 684
  • [22] UPPER CRITICAL DIMENSION OF KAUFFMAN CELLULAR AUTOMATA
    OBUKHOV, SP
    STAUFFER, D
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1989, 22 (10): : 1715 - 1718
  • [23] A fluctuating state and the critical behavior of the depinning transition in driven vortex matter in superconductors
    Shaw, Gorky
    Mandal, Pabitra
    Banerjee, S. S.
    Niazi, A.
    Rastogi, A. K.
    Sood, A. K.
    Tulapurkar, A.
    Ramakrishnan, S.
    Grover, A. K.
    SOLID STATE PHYSICS, PTS 1 AND 2, 2012, 1447 : 13 - 18
  • [24] Nonsteady relaxation and critical exponents at the depinning transition (vol 87, 032122, 2013)
    Ferrero, E. E.
    Bustingorry, S.
    Kolton, A. B.
    PHYSICAL REVIEW E, 2013, 87 (06):
  • [25] Crack propagation through disordered materials as a depinning transition: A critical test of the theory
    Ponson, Laurent
    Pindra, Nadjime
    PHYSICAL REVIEW E, 2017, 95 (05)
  • [26] Invariant circles and depinning transition
    Qin, Wen-Xin
    Wang, Ya-Nan
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2018, 38 : 761 - 787
  • [27] CORRECTIONS TO LEADING SINGULARITIES IN SYSTEMS AT THE UPPER CRITICAL DIMENSION
    KOGON, HS
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1981, 14 (12): : 3253 - 3259
  • [28] Scaling above the upper critical dimension in Ising models
    Parisi, G
    RuizLorenzo, JJ
    PHYSICAL REVIEW B, 1996, 54 (06) : R3698 - R3701
  • [29] Existence of an upper critical dimension in the majority voter model
    Yang, Jae-Suk
    Kim, In-mook
    Kwak, Wooseop
    PHYSICAL REVIEW E, 2008, 77 (05):
  • [30] Scaling behaviour of lattice animals at the upper critical dimension
    C. von Ferber
    D. Foster
    H. P. Hsu
    R. Kenna
    The European Physical Journal B, 2011, 83