FUSING IMAGING SPECTROMETRY AND AIRBORNE LASER SCANNING DATA FOR TREE SPECIES DISCRIMINATION

被引:6
作者
Torabzadeh, H. [1 ]
Morsdorf, F. [1 ]
Leiterer, R. [1 ]
Schaepman, M. E. [1 ]
机构
[1] Univ Zurich, Dept Geog, Remote Sensing Labs, CH-8057 Zurich, Switzerland
来源
2014 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS) | 2014年
关键词
data fusion; airborne laser scanning; imaging spectrometry; tree species; support vector machines; LIDAR DATA; CLASSIFICATION;
D O I
10.1109/IGARSS.2014.6946660
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Accurate mapping of tree species composition within forest ecosystems is an important aspect of management planning and monitoring. Passive optical remote sensing in general and imaging spectroscopy (IS) in particular have played an important role in producing such maps, but are suffering from issues due to vegetation structure. On the other hand, the structural information provided by airborne laser scanning (ALS) was shown to be helpful for species discrimination, particularly in heterogeneous forests. In this paper, we investigate the potential of product-level fusion of IS and ALS to provide a better tree species differentiation based on their complementarity. Our results show that the fused tree species map does improve on the single system maps and more accurately provides the distribution and fraction of each tree species within the study area.
引用
收藏
页码:1253 / 1256
页数:4
相关论文
共 11 条
[1]   Tree species classification in the Southern Alps based on the fusion of very high geometrical resolution multispectral/hyperspectral images and LiDAR data [J].
Dalponte, Michele ;
Bruzzone, Lorenzo ;
Gianelle, Damiano .
REMOTE SENSING OF ENVIRONMENT, 2012, 123 :258-270
[2]   Defining and classifying ecosystem services for decision making [J].
Fisher, Brendan ;
Turner, R. Kerry ;
Morling, Paul .
ECOLOGICAL ECONOMICS, 2009, 68 (03) :643-653
[3]   Identifying species of individual trees using airborne laser scanner [J].
Holmgren, J ;
Persson, Å .
REMOTE SENSING OF ENVIRONMENT, 2004, 90 (04) :415-423
[4]   APEX - the Hyperspectral ESA Airborne Prism Experiment [J].
Itten, Klaus I. ;
Dell'Endice, Francesco ;
Hueni, Andreas ;
Kneubuehler, Mathias ;
Schlaeper, Daniel ;
Odermatt, Daniel ;
Seidel, Felix ;
Huber, Silvia ;
Schopfer, Juerg ;
Kellenberger, Tobias ;
Buehler, Yves ;
D'Odorico, Petra ;
Nieke, Jens ;
Alberti, Edoardo ;
Meuleman, Koen .
SENSORS, 2008, 8 (10) :6235-6259
[5]   Assessing the utility of airborne hyperspectral and LiDAR data for species distribution mapping in the coastal Pacific Northwest, Canada [J].
Jones, Trevor G. ;
Coops, Nicholas C. ;
Sharma, Tara .
REMOTE SENSING OF ENVIRONMENT, 2010, 114 (12) :2841-2852
[6]   Fusion of imaging spectrometer and LIDAR data over combined radiative transfer models for forest canopy characterization [J].
Koetz, Benjamin ;
Sun, Guoqing ;
Morsdorf, Felix ;
Ranson, K. J. ;
Kneubuehler, Mathias ;
Itten, Klaus ;
Allgoewer, Britta .
REMOTE SENSING OF ENVIRONMENT, 2007, 106 (04) :449-459
[7]   Airborne discrete-return LIDAR data in the estimation of vertical canopy cover, angular canopy closure and leaf area index [J].
Korhonen, Lauri ;
Korpela, Ilkka ;
Heiskanen, Janne ;
Maltamo, Matti .
REMOTE SENSING OF ENVIRONMENT, 2011, 115 (04) :1065-1080
[8]   Issues in species classification of trees in old growth conifer stands [J].
Leckie, Donald G. ;
Tinis, Sally ;
Nelson, Trisalyn ;
Burnett, Charles ;
Gougeon, Francois A. ;
Cloney, Ed ;
Paradine, Dennis .
CANADIAN JOURNAL OF REMOTE SENSING, 2005, 31 (02) :175-190
[9]  
Nabuurs GJ, 2007, AR4 CLIMATE CHANGE 2007: MITIGATION OF CLIMATE CHANGE, P541
[10]  
Torabzadeh H., 2014, ISPRS J PHOTOGRAMMET