Phase space path integral on torus for the fundamental solution of higher-order parabolic equations

被引:1
作者
Kumano-go, Naoto [1 ]
Uchida, Keiya [1 ]
机构
[1] Kogakuin Univ, Dept Informat, 2665-1 Nakanomachi, Hachioji, Tokyo 1920015, Japan
关键词
Path integral; Pseudo-differential operator; Parabolic equation;
D O I
10.1007/s11868-020-00341-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We give a rigorous formulation of phase space path integrals on the torus Td=(R/2 pi Z)d for fundamental solutions of higher-order parabolic equations. Especially, by using the pseudo-differential operators on the torus, we prove that the time slicing approximation of the phase space path integral converges on compact subsets of T-d x R-d.
引用
收藏
页码:1059 / 1083
页数:25
相关论文
共 23 条
[1]  
Agranovich M. S., 1979, Funktsional. Anal. i Prilozhen., V13, P54, DOI [10.1007/BF01078368, DOI 10.1007/BF01078368]
[2]   Generalized Feynman path integrals and applications to higher-order heat-type equations [J].
Albeverio, S. ;
Cangiotti, N. ;
Mazzucchi, S. .
EXPOSITIONES MATHEMATICAE, 2018, 36 (3-4) :406-429
[3]   Phase space Feynman path integrals [J].
Albeverio, S ;
Guatteri, G ;
Mazzucchi, S .
JOURNAL OF MATHEMATICAL PHYSICS, 2002, 43 (06) :2847-2857
[4]  
Albeverio S. A., 2008, LECT NOTES MATH, V523
[5]  
[Anonymous], 1981, PSEUDO DIFFERENTIAL
[6]  
Bock W, 2011, THEOR PROBAB MATH ST, V85, P7
[7]  
Bodmann B.G., 1999, ARXIVQUANTPH9902003
[8]   QUANTUM-MECHANICAL PATH-INTEGRALS WITH WIENER MEASURE FOR ALL POLYNOMIAL HAMILTONIANS .2. [J].
DAUBECHIES, I ;
KLAUDER, JR .
JOURNAL OF MATHEMATICAL PHYSICS, 1985, 26 (09) :2239-2256
[9]   AN OPERATOR CALCULUS HAVING APPLICATIONS IN QUANTUM ELECTRODYNAMICS [J].
FEYNMAN, RP .
PHYSICAL REVIEW, 1951, 84 (01) :108-128
[10]   THE STATIONARY PHASE METHOD WITH AN ESTIMATE OF THE REMAINDER TERM ON A SPACE OF LARGE DIMENSION [J].
FUJIWARA, D .
NAGOYA MATHEMATICAL JOURNAL, 1991, 124 :61-97