Graphene/PbS-Quantum Dots/Graphene Sandwich Structures Enabled by Laser Shock Imprinting for High Performance Photodetectors

被引:55
作者
Nian, Qiong [1 ,2 ]
Gao, Liang [3 ]
Hu, Yaowu [1 ,2 ]
Deng, Biwei [1 ,2 ]
Tang, Jiang [3 ]
Cheng, Gary J. [1 ,2 ]
机构
[1] Purdue Univ, Sch Ind Engn, W Lafayette, IN 47906 USA
[2] Purdue Univ, Birck Nanotechnol Ctr, W Lafayette, IN 47906 USA
[3] Huazhong Univ Sci & Technol, Wuhan Natl Lab Optoelect, Wuhan 430074, Hubei, Peoples R China
基金
美国国家科学基金会;
关键词
microfabrication; photodetector; quantum dot; graphene; response time; photoresponse rate; photoresponse gain; INFRARED PHOTODETECTORS; TRANSPORT; ORIGINS; DEVICE;
D O I
10.1021/acsami.7b14468
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Quantum dots (QDs) integrated 2-dimensional (2D) materials have great potential for photodetector applications due to the excellent light absorption of QDs and ultrafast carrier transportation of 2D materials. However, there is a main issue that prevents efficient carrier transportation and ideal performance of photodetectors: the high interfacial resistance between 2D materials and QDs due to the bad contacts between 2D/0D interface, which makes sluggish carrier transfer from QDs to 2D materials. Here, a sandwich structure (graphene/PbS-QDs/graphene) with seamless 2D/0D contact was fabricated by laser shock imprinting, which opto-mechanically tunes the morphology of 2D materials to perfectly wrap on 0D materials and efficiently collect carriers from the PbS-QDs. It is found that this seamless integrated 2D/0D/2D structure significantly enhanced the carrier transmission, photoresponse gain (by 2x), response time (by 20x), and photoresponse speed (by 13x). The response time (similar to 30 ms) and I-p/ I-d ratio (13.2) are both over 10x better than the reported hybrid graphene photodetectors. This is due to the tight contact and efficient gate-modulated carrier injection from PbS-QDs to graphene. The gate voltage dictates whether electrons or holes dominate the carrier injection from PbS-QDs to graphene.
引用
收藏
页码:44715 / 44723
页数:9
相关论文
共 40 条
[1]  
[Anonymous], 2010, ANGEW CHEM
[2]   Negative and Positive Persistent Photoconductance in Graphene [J].
Biswas, Chandan ;
Guenes, Fethullah ;
Duong Dinh Loc ;
Lim, Seong Chu ;
Jeong, Mun Seok ;
Pribat, Didier ;
Lee, Young Hee .
NANO LETTERS, 2011, 11 (11) :4682-4687
[3]  
Bonaccorso F, 2010, NAT PHOTONICS, V4, P611, DOI [10.1038/NPHOTON.2010.186, 10.1038/nphoton.2010.186]
[4]   Resonant tunnelling and negative differential conductance in graphene transistors [J].
Britnell, L. ;
Gorbachev, R. V. ;
Geim, A. K. ;
Ponomarenko, L. A. ;
Mishchenko, A. ;
Greenaway, M. T. ;
Fromhold, T. M. ;
Novoselov, K. S. ;
Eaves, L. .
NATURE COMMUNICATIONS, 2013, 4
[5]   Field-Effect Tunneling Transistor Based on Vertical Graphene Heterostructures [J].
Britnell, L. ;
Gorbachev, R. V. ;
Jalil, R. ;
Belle, B. D. ;
Schedin, F. ;
Mishchenko, A. ;
Georgiou, T. ;
Katsnelson, M. I. ;
Eaves, L. ;
Morozov, S. V. ;
Peres, N. M. R. ;
Leist, J. ;
Geim, A. K. ;
Novoselov, K. S. ;
Ponomarenko, L. A. .
SCIENCE, 2012, 335 (6071) :947-950
[6]  
Chuang CHM, 2014, NAT MATER, V13, P796, DOI [10.1038/nmat3984, 10.1038/NMAT3984]
[7]   Single-Layer Graphene as a Barrier Layer for Intense UV Laser-Induced Damages for Silver Nanowire Network [J].
Das, Suprem R. ;
Nian, Qiong ;
Saei, Mojib ;
Jin, Shengyu ;
Back, Doosan ;
Kumar, Prashant ;
Janes, David B. ;
Alam, Muhammad A. ;
Cheng, Gary J. .
ACS NANO, 2015, 9 (11) :11121-11133
[8]   Boron nitride substrates for high-quality graphene electronics [J].
Dean, C. R. ;
Young, A. F. ;
Meric, I. ;
Lee, C. ;
Wang, L. ;
Sorgenfrei, S. ;
Watanabe, K. ;
Taniguchi, T. ;
Kim, P. ;
Shepard, K. L. ;
Hone, J. .
NATURE NANOTECHNOLOGY, 2010, 5 (10) :722-726
[9]   PHYSICAL STUDY OF LASER-PRODUCED PLASMA IN CONFINED GEOMETRY [J].
FABBRO, R ;
FOURNIER, J ;
BALLARD, P ;
DEVAUX, D ;
VIRMONT, J .
JOURNAL OF APPLIED PHYSICS, 1990, 68 (02) :775-784
[10]   Large-scale nanoshaping of ultrasmooth 3D crystalline metallic structures [J].
Gao, Huang ;
Hu, Yaowu ;
Xuan, Yi ;
Li, Ji ;
Yang, Yingling ;
Martinez, Ramses V. ;
Li, Chunyu ;
Luo, Jian ;
Qi, Minghao ;
Cheng, Gary J. .
SCIENCE, 2014, 346 (6215) :1352-1356