Size dictated thermal conductivity of GaN

被引:92
作者
Beechem, Thomas E. [1 ]
McDonald, Anthony E. [1 ]
Fuller, Elliot J. [2 ]
Talin, A. Alec [2 ]
Rost, Christina M. [3 ]
Maria, Jon-Paul [3 ]
Gaskins, John T. [4 ]
Hopkins, Patrick E. [4 ]
Allerman, Andrew A. [1 ]
机构
[1] Sandia Natl Labs, Albuquerque, NM 87123 USA
[2] Sandia Natl Labs, Livermore, CA 94551 USA
[3] North Carolina State Univ, Dept Mat Sci & Engn, Raleigh, NC 27695 USA
[4] Univ Virginia, Dept Mech & Aerosp Engn, Charlottesville, VA 22904 USA
基金
美国国家科学基金会;
关键词
TIME-DOMAIN THERMOREFLECTANCE; OVERGROWN GAN/SAPPHIRE 0001; TEMPERATURE-DEPENDENCE; RAMAN-SPECTROSCOPY; GALLIUM NITRIDE; LATTICE WAVES; SCATTERING; FILMS; DISLOCATIONS; IMPURITIES;
D O I
10.1063/1.4962010
中图分类号
O59 [应用物理学];
学科分类号
摘要
The thermal conductivity of n- and p-type doped gallium nitride (GaN) epilayers having thicknesses of 3-4 mu m was investigated using time domain thermoreflectance. Despite possessing carrier concentrations ranging across 3 decades (10(15) - 10(18) cm(-3)), n-type layers exhibit a nearly constant thermal conductivity of 180 W/mK. The thermal conductivity of p-type epilayers, in contrast, reduces from 160 to 110 W/mK with increased doping. These trends-and their overall reduction relative to bulk-are explained leveraging established scattering models where it is shown that, while the decrease in p-type layers is partly due to the increased impurity levels evolving from its doping, size effects play a primary role in limiting the thermal conductivity of GaN layers tens of microns thick. Device layers, even of pristine quality, will therefore exhibit thermal conductivities less than the bulk value of 240 W/mK owing to their finite thickness. Published by AIP Publishing.
引用
收藏
页数:6
相关论文
共 67 条
[1]  
[Anonymous], THESIS
[2]   High spatial resolution thermal conductivity of lateral epitaxial overgrown GaN/sapphire (0001) using a scanning thermal microscope [J].
Asnin, VM ;
Pollak, FH ;
Ramer, J ;
Schurman, M ;
Ferguson, I .
APPLIED PHYSICS LETTERS, 1999, 75 (09) :1240-1242
[3]   Micro-Raman thermometry in the presence of complex stresses in GaN devices [J].
Beechem, T. ;
Christensen, A. ;
Graham, S. ;
Green, D. .
JOURNAL OF APPLIED PHYSICS, 2008, 103 (12)
[4]   Contribution of optical phonons to thermal boundary conductance [J].
Beechem, Thomas ;
Duda, John C. ;
Hopkins, Patrick E. ;
Norris, Pamela M. .
APPLIED PHYSICS LETTERS, 2010, 97 (06)
[5]  
Berman R, 1976, OXFORD STUDIES PHYS
[6]   Thermal Boundary Resistance in GaN Films Measured by Time Domain Thermoreflectance with Robust Monte Carlo Uncertainty Estimation [J].
Bougher, Thomas L. ;
Yates, Luke ;
Lo, Chien-Fong ;
Johnson, Wayne ;
Graham, Samuel ;
Cola, Baratunde A. .
NANOSCALE AND MICROSCALE THERMOPHYSICAL ENGINEERING, 2016, 20 (01) :22-32
[7]   Analysis of heat flow in layered structures for time-domain thermoreflectance [J].
Cahill, DG .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2004, 75 (12) :5119-5122
[8]   THEORY OF THERMAL CONDUCTIVITY OF SOLIDS AT LOW TEMPERATURES [J].
CARRUTHERS, P .
REVIEWS OF MODERN PHYSICS, 1961, 33 (01) :92-138
[9]   SCATTERING OF PHONONS BY ELASTIC STRAIN FIELDS AND THE THERMAL RESISTANCE OF DISLOCATIONS [J].
CARRUTHERS, P .
PHYSICAL REVIEW, 1959, 114 (04) :995-1001
[10]   Thermal effects in packaging high power light emitting diode arrays [J].
Christensen, Adam ;
Graham, Samuel .
APPLIED THERMAL ENGINEERING, 2009, 29 (2-3) :364-371