Analysis and finite element discretization for optimal control of a linear fluid-structure interaction problem with delay

被引:6
|
作者
Peralta, Gilbert [1 ]
Kunisch, Karl [2 ,3 ]
机构
[1] Univ Philippines Baguio, Dept Math & Comp Sci, Governor Pack Rd, Baguio 2600, Philippines
[2] Karl Franzens Univ Graz, Inst Math & Sci Comp, Heinrichstr 36, A-8010 Graz, Austria
[3] Austrian Acad Sci, RICAM Inst, Altenbergerstr 69, A-4040 Linz, Austria
基金
欧盟地平线“2020”;
关键词
fluid-structure interaction; delay; optimal control; space-time finite elements; error estimates; BOUNDARY FEEDBACK STABILIZATION; PARTITIONED FSI ALGORITHM; DATA GLOBAL EXISTENCE; STOKES-LAME SYSTEM; COUPLED PDE SYSTEM; WELL-POSEDNESS; PART I; WEAK SOLUTIONS; WAVE-EQUATION; TIME DELAYS;
D O I
10.1093/imanum/dry070
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An optimal control problem for a linearized fluid-structure interaction model with a delay term in the structural damping is analyzed. A distributed control acting on the fluid domain, structure domain or both is considered. The necessary optimality conditions are derived both for rough and smooth initial data. A parabolic regularization of the problem and its convergence are investigated. Finite element discretization for the regularized problem and error estimates are provided. Piecewise linear elements with bubble functions for the fluid and a discontinuous Galerkin scheme for the spatial and temporal discretizations are utilized respectively. Numerical experiments illustrating the theoretical results are given.
引用
收藏
页码:140 / 206
页数:67
相关论文
共 50 条
  • [1] Optimal Control of a Linear Unsteady Fluid-Structure Interaction Problem
    Failer, Lukas
    Meidner, Dominik
    Vexler, Boris
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2016, 170 (01) : 1 - 27
  • [2] Analysis of a nonlinear fluid-structure interaction model with mechanical dissipation and delay
    Peralta, Gilbert
    Kunisch, Karl
    NONLINEARITY, 2019, 32 (12) : 5110 - 5149
  • [3] Semidiscrete finite element approximations of a linear fluid-structure interaction problem
    Du, Q
    Gunzburger, MD
    Hou, LS
    Lee, J
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2004, 42 (01) : 1 - 29
  • [4] ANALYSIS OF A FLUID-STRUCTURE INTERACTION PROBLEM RECAST IN AN OPTIMAL CONTROL SETTING
    Kuberry, P.
    Lee, H.
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2015, 53 (03) : 1464 - 1487
  • [5] Analysis of a linear fluid-structure interaction problem
    Du, Q
    Gunzberger, MD
    Hou, LS
    Lee, J
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2003, 9 (03) : 633 - 650
  • [6] NONCONFORMING MIXED FINITE ELEMENT APPROXIMATION OF A FLUID-STRUCTURE INTERACTION SPECTRAL PROBLEM
    Meddahi, Salim
    Mora, David
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2016, 9 (01): : 269 - 287
  • [7] A Nonconforming Finite Element Method for an Acoustic Fluid-Structure Interaction Problem
    Brenner, Susanne C.
    Cesmelioglu, Aycil
    Cui, Jintao
    Sung, Li-Yeng
    COMPUTATIONAL METHODS IN APPLIED MATHEMATICS, 2018, 18 (03) : 383 - 406
  • [8] A monolithic mixed finite element method for a fluid-structure interaction problem
    Bean, Maranda
    Yi, Son-Young
    APPLIED MATHEMATICS AND COMPUTATION, 2019, 363
  • [9] Interface feedback control stabilization of a nonlinear fluid-structure interaction
    Lasiecka, Irena
    Lu, Yongjin
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2012, 75 (03) : 1449 - 1460
  • [10] Convergence analysis and error estimate of finite element method of a nonlinear fluid-structure interaction problem
    Zhao, Xin
    Liu, Xin
    Li, Jian
    AIMS MATHEMATICS, 2020, 5 (05): : 5240 - 5260