Mixed Hidden Markov Models for Longitudinal Data: An Overview

被引:84
作者
Maruotti, Antonello [1 ]
机构
[1] Univ Roma Tre, Dipartimento Ist Pubbl Econ & Soc, I-00145 Rome, Italy
关键词
Longitudinal data; mixed hidden Markov model; random effects model; unobserved heterogeneity; RESEARCH-AND-DEVELOPMENT; MAXIMUM-LIKELIHOOD-ESTIMATION; TIME-SERIES; PROBABILISTIC FUNCTIONS; EM ALGORITHM; DEVELOPMENT SPILLOVERS; PARAMETER-ESTIMATION; MIXTURE LIKELIHOODS; ECONOMETRIC-MODELS; POISSON-REGRESSION;
D O I
10.1111/j.1751-5823.2011.00160.x
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper we review statistical methods which combine hidden Markov models (HMMs) and random effects models in a longitudinal setting, leading to the class of so-called mixed HMMs. This class of models has several interesting features. It deals with the dependence of a response variable on covariates, serial dependence, and unobserved heterogeneity in an HMM framework. It exploits the properties ofHMMs, such as the relatively simple dependence structure and the efficient computational procedure, and allows one to handle a variety of real-world time-dependent data. We give details of the Expectation-Maximization algorithm for computing the maximum likelihood estimates of model parameters and we illustrate the method with two real applications describing the relationship between patent counts and research and development expenditures, and between stock and market returns via the Capital Asset Pricing Model.
引用
收藏
页码:427 / 454
页数:28
相关论文
共 120 条
[21]  
Bickel P. J., 1996, Bernoulli, V2, P199
[22]  
Bickel PJ, 1998, ANN STAT, V26, P1614
[23]   Choosing starting values for the EM algorithm for getting the highest likelihood in multivariate Gaussian mixture models [J].
Biernacki, C ;
Celeux, G ;
Govaert, G .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2003, 41 (3-4) :561-575
[24]   The EM algorithm with gradient function update for discrete mixtures with known (fixed) number of components [J].
Böhning, D .
STATISTICS AND COMPUTING, 2003, 13 (03) :257-265
[25]  
Bound J., 1984, RD PATENTS PRODUCTIV
[26]   APPROXIMATE INFERENCE IN GENERALIZED LINEAR MIXED MODELS [J].
BRESLOW, NE ;
CLAYTON, DG .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1993, 88 (421) :9-25
[27]   Computational issues in parameter estimation for stationary hidden Markov models [J].
Bulla, Jan ;
Berzel, Andreas .
COMPUTATIONAL STATISTICS, 2008, 23 (01) :1-18
[28]   Markov-switching asset allocation: Do profitable strategies exist [J].
Bulla J. ;
Mergner S. ;
Bulla I. ;
Sesboüé A. ;
Chesneau C. .
Journal of Asset Management, 2011, 12 (5) :310-321
[29]   Hidden Markov models with t components. Increased persistence and other aspects [J].
Bulla, Jan .
QUANTITATIVE FINANCE, 2011, 11 (03) :459-475
[30]   hsmm - An R package for analyzing hidden semi-Markov models [J].
Bulla, Jan ;
Bulla, Ingo ;
Nenadic, Oleg .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2010, 54 (03) :611-619