Isolation Distributional Kernel: A New Tool for Kernel based Anomaly Detection

被引:34
|
作者
Ting, Kai Ming [1 ]
Xu, Bi-Cun [1 ]
Washio, Takashi [2 ]
Zhou, Zhi-Hua [1 ]
机构
[1] Nanjing Univ, Natl Key Lab Novel Software Technol, Nanjing, Peoples R China
[2] Osaka Univ, Inst Sci & Ind Res, Suita, Osaka, Japan
来源
KDD '20: PROCEEDINGS OF THE 26TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING | 2020年
基金
国家重点研发计划;
关键词
Distributional Kernel; Kernel Mean Embedding; Anomaly Detection;
D O I
10.1145/3394486.3403062
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We introduce Isolation Distributional Kernel as a new way to measure the similarity between two distributions. Existing approaches based on kernel mean embedding, which converts a point kernel to a distributional kernel, have two key issues: the point kernel employed has a feature map with intractable dimensionality; and it is data independent. This paper shows that Isolation Distributional Kernel (IDK), which is based on a data dependent point kernel, addresses both key issues. We demonstrate IDK's efficacy and efficiency as a new tool for kernel based anomaly detection. Without explicit learning, using IDK alone outperforms existing kernel based anomaly detector OCSVM and other kernel mean embedding methods that rely on Gaussian kernel. We reveal for the first time that an effective kernel based anomaly detector based on kernel mean embedding must employ a characteristic kernel which is data dependent.
引用
收藏
页码:198 / 206
页数:9
相关论文
共 50 条
  • [1] Isolation Distributional Kernel: A New Tool for Point and Group Anomaly Detections
    Ting, Kai Ming
    Xu, Bi-Cun
    Washio, Takashi
    Zhou, Zhi-Hua
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2023, 35 (03) : 2697 - 2710
  • [2] Kernel-based clustering via Isolation Distributional Kernel
    Zhu, Ye
    Ting, Kai Ming
    INFORMATION SYSTEMS, 2023, 117
  • [3] Hyperspectral Anomaly Detection With Kernel Isolation Forest
    Li, Shutao
    Zhang, Kunzhong
    Duan, Puhong
    Kang, Xudong
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2020, 58 (01): : 319 - 329
  • [4] Kernel-Based Nonparametric Anomaly Detection
    Zou, Shaofeng
    Liang, Yingbin
    Poor, H. Vincent
    Shi, Xinghua
    2014 IEEE 15TH INTERNATIONAL WORKSHOP ON SIGNAL PROCESSING ADVANCES IN WIRELESS COMMUNICATIONS (SPAWC), 2014, : 224 - +
  • [5] OPTIMAL KERNEL BANDWIDTH ESTIMATION FOR HYPERSPECTRAL KERNEL-BASED ANOMALY DETECTION
    Kwon, Heesung
    Gurram, Prudhvi
    2010 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2010, : 2812 - 2815
  • [6] Detecting Change Intervals with Isolation Distributional Kernel
    Cao Y.
    Zhu Y.
    Ting K.M.
    Salim F.D.
    Li H.X.
    Yang L.
    Li G.
    Journal of Artificial Intelligence Research, 2024, 79 : 273 - 306
  • [7] Detecting Change Intervals with Isolation Distributional Kernel
    Cao, Yang
    Zhu, Ye
    Ting, Kai Ming
    Salim, Flora D.
    Li, Hong Xian
    Yang, Luxing
    Li, Gang
    JOURNAL OF ARTIFICIAL INTELLIGENCE RESEARCH, 2024, 79 : 273 - 306
  • [8] Fast Kernel-based Method for Anomaly Detection
    Anh Le
    Trung Le
    Khanh Nguyen
    Van Nguyen
    Thai Hoang Le
    Dat Tran
    2016 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2016, : 3211 - 3217
  • [9] Sparse Kernel-Based Hyperspectral Anomaly Detection
    Gurram, Prudhvi
    Kwon, Heesung
    Han, Timothy
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2012, 9 (05) : 943 - 947
  • [10] Kernel-based anomaly detection in hyperspectral imagery
    Kwon, Heesung
    Nasrabadi, Nasser M.
    TRANSFORMATIONAL SCIENCE AND TECHNOLOGY FOR THE CURRENT AND FUTURE FORCE, 2006, 42 : 3 - +