Polymerization of the backbone of the pectic polysaccharide rhamnogalacturonan I

被引:29
作者
Amos, Robert A. [1 ,2 ]
Atmodjo, Melani A. [1 ,2 ]
Huang, Chin [1 ,2 ]
Gao, Zhongwei [2 ]
Venkat, Aarya [1 ]
Taujale, Rahil [1 ]
Kannan, Natarajan [1 ]
Moremen, Kelley W. [1 ,2 ]
Mohnen, Debra [1 ,2 ]
机构
[1] Univ Georgia, Dept Biochem & Mol Biol, Athens, GA 30602 USA
[2] Univ Georgia, Complex Carbohydrate Res Ctr, Athens, GA 30602 USA
基金
美国国家卫生研究院;
关键词
ARABIDOPSIS-THALIANA; IDENTIFICATION; BIOSYNTHESIS; ALIGNMENT; PROTEINS; MUCILAGE; ENZYMES; GROWTH;
D O I
10.1038/s41477-022-01270-3
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Rhamnogalacturonan I (RG-I) is a major plant cell wall pectic polysaccharide defined by its repeating disaccharide backbone structure of [4)-alpha-d-GalA-(1,2)-alpha-l-Rha-(1,]. A family of RG-I:Rhamnosyltransferases (RRT) has previously been identified, but synthesis of the RG-I backbone has not been demonstrated in vitro because the identity of Rhamnogalacturonan I:Galaturonosyltransferase (RG-I:GalAT) was unknown. Here a putative glycosyltransferase, At1g28240/MUCI70, is shown to be an RG-I:GalAT. The name RGGAT1 is proposed to reflect the catalytic activity of this enzyme. When incubated together with the rhamnosyltransferase RRT4, the combined activities of RGGAT1 and RRT4 result in elongation of RG-I acceptors in vitro into a polymeric product. RGGAT1 is a member of a new GT family categorized as GT116, which does not group into existing GT-A clades and is phylogenetically distinct from the GALACTURONOSYLTRANSFERASE (GAUT) family of GalA transferases that synthesize the backbone of the pectin homogalacturonan. RGGAT1 has a predicted GT-A fold structure but employs a metal-independent catalytic mechanism that is rare among glycosyltransferases with this fold type. The identification of RGGAT1 and the 8-member Arabidopsis GT116 family provides a new avenue for studying the mechanism of RG-I synthesis and the function of RG-I in plants. The glycosyltransferase enzyme RGGAT1 is shown to catalyse the addition of galacturonic acid into rhamnogalacturonan I, the backbone of the plant cell wall, with implications for in vitro pectin synthesis.
引用
收藏
页码:1289 / +
页数:28
相关论文
共 64 条
[1]   Critical Review of Plant Cell Wall Matrix Polysaccharide Glycosyltransferase Activities Verified by Heterologous Protein Expression [J].
Amos, Robert A. ;
Mohnen, Debra .
FRONTIERS IN PLANT SCIENCE, 2019, 10
[2]   A two-phase model for the non-processive biosynthesis of homogalacturonan polysaccharides by the GAUT1:GAUT7 complex [J].
Amos, Robert A. ;
Pattathil, Sivakumar ;
Yang, Jeong-Yeh ;
Atmodjo, Melani A. ;
Urbanowicz, Breeanna R. ;
Moremen, Kelley W. ;
Mohnen, Debra .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2018, 293 (49) :19047-19063
[3]   Seed coat mucilage cells of Arabidopsis thaliana as a model for plant cell wall research [J].
Arsovski, Andrej A. ;
Haughn, George W. ;
Western, Tamara L. .
PLANT SIGNALING & BEHAVIOR, 2010, 5 (07) :796-801
[4]   Evolving Views of Pectin Biosynthesis [J].
Atmodjo, Melani A. ;
Hao, Zhangying ;
Mohnen, Debra .
ANNUAL REVIEW OF PLANT BIOLOGY, VOL 64, 2013, 64 :747-+
[5]   Galacturonosyltransferase (GAUT)1 and GAUT7 are the core of a plant cell wall pectin biosynthetic homogalacturonan: galacturonosyltransferase complex [J].
Atmodjo, Melani A. ;
Sakuragi, Yumiko ;
Zhu, Xiang ;
Burrell, Amy J. ;
Mohanty, Sushree S. ;
Atwood, James A., III ;
Orlando, Ron ;
Scheller, Henrik V. ;
Mohnen, Debra .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2011, 108 (50) :20225-20230
[6]   The backbone of the pectic polysaccharide rhamnogalacturonan I is cleaved by an endohydrolase and an endolyase [J].
Azadi, P ;
ONeill, MA ;
Bergmann, C ;
Darvill, AG ;
Albersheim, P .
GLYCOBIOLOGY, 1995, 5 (08) :783-789
[7]   Protocols for isolating and characterizing polysaccharides from plant cell walls: a case study using rhamnogalacturonan-II [J].
Barnes, William J. ;
Koj, Sabina ;
Black, Ian M. ;
Archer-Hartmann, Stephanie A. ;
Azadi, Parastoo ;
Urbanowicz, Breeanna R. ;
Pena, Maria J. ;
O'Neill, Malcolm A. .
BIOTECHNOLOGY FOR BIOFUELS, 2021, 14 (01)
[8]   Sugar release and growth of biofuel crops are improved by downregulation of pectin biosynthesis [J].
Biswal, Ajaya K. ;
Atmodjo, Melani A. ;
Li, Mi ;
Baxter, Holly L. ;
Yoo, Chang Geun ;
Pu, Yunqiao ;
Lee, Yi-Ching ;
Mazarei, Mitra ;
Black, Ian M. ;
Zhang, Ji-Yi ;
Ramanna, Hema ;
Bray, Adam L. ;
King, Zachary R. ;
LaFayette, Peter R. ;
Pattathil, Sivakumar ;
Donohoe, Bryon S. ;
Mohanty, Sushree S. ;
Ryno, David ;
Yee, Kelsey ;
Thompson, Olivia A. ;
Rodriguez, Miguel, Jr. ;
Dumitrache, Alexandru ;
Natzke, Jace ;
Winkeler, Kim ;
Collins, Cassandra ;
Yang, Xiaohan ;
Tan, Li ;
Sykes, Robert W. ;
Gjersing, Erica L. ;
Ziebell, Angela ;
Turner, Geoffrey B. ;
Decker, Stephen R. ;
Hahn, Michael G. ;
Davison, Brian H. ;
Udvardi, Michael K. ;
Mielenz, Jonathan R. ;
Davis, Mark F. ;
Nelson, Richard S. ;
Parrott, Wayne A. ;
Ragauskas, Arthur J. ;
Stewart, C. Neal, Jr. ;
Mohnen, Debra .
NATURE BIOTECHNOLOGY, 2018, 36 (03) :249-+
[9]   Pectin-modifying enzymes and pectin-derived materials: applications and impacts [J].
Bonnin, Estelle ;
Garnier, Catherine ;
Ralet, Marie-Christine .
APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2014, 98 (02) :519-532
[10]   The Arabidopsis alkaline ceramidase TOD1 is a key turgor pressure regulator in plant cells [J].
Chen, Li-Yu ;
Shi, Dong-Qiao ;
Zhang, Wen-Juan ;
Tang, Zuo-Shun ;
Liu, Jie ;
Yang, Wei-Cai .
NATURE COMMUNICATIONS, 2015, 6