Packing cycles with modularity constraints

被引:20
作者
Wollan, Paul [1 ]
机构
[1] Univ Rome, Dept Comp Sci, I-00198 Rome, Italy
关键词
ERDOS-POSA PROPERTY; ODD CYCLES; A-PATHS; GRAPHS; DISJOINT;
D O I
10.1007/s00493-011-2551-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that for all positive integers k, there exists an integer N =N(k) such that the following holds. Let G be a graph and let I" an abelian group with no element of order two. Let gamma: E(G)-> I" be a function from the edges of G to the elements of I". A non-zero cycle is a cycle C such that I pound (eaE(C)) gamma(e) not equal 0 where 0 is the identity element of I". Then G either contains k vertex disjoint non-zero cycles or there exists a set X aS dagger V (G) with |X| a parts per thousand currency signN(k) such that G-X contains no non-zero cycle. An immediate consequence is that for all positive odd integers m, a graph G either contains k vertex disjoint cycles of length not congruent to 0 mod m, or there exists a set X of vertices with |X| a parts per thousand currency sign N(k) such that every cycle of G-X has length congruent to 0 mod m. No such value N(k) exists when m is allowed to be even, as examples due to Reed and Thomassen show.
引用
收藏
页码:95 / 126
页数:32
相关论文
共 18 条
[1]   Packing non-zero A-paths in group-labelled graphs [J].
Chudnovsky, Maria ;
Geelen, Jim ;
Gerards, Bert ;
Goddyn, Luis ;
Lohman, Michael ;
Seymour, Paul .
COMBINATORICA, 2006, 26 (05) :521-532
[2]  
DEJTER I, 1985, 4 CAR C COMP PUERT R
[3]  
Erd6s P., 1962, Publ. Math. Debrecen, V9, P3
[4]  
ERDOH P., 1935, Compos. Math., V2, P463
[5]  
Gallai T., 1961, ACTA MATH ACAD SCI H, V12, P131, DOI [10.1007/BF02066678, DOI 10.1007/BF02066678, 10.1007/bf02066678]
[6]  
KAWARABAYASHI K, 2006, J COMB THEORY B, V96, P754
[7]   The Erdos-Posa property for vertex- and edge-disjoint odd cycles in graphs on orientable surfaces [J].
Kawarabayashi, Ken-Ichi ;
Nakamoto, Atsuhiro .
DISCRETE MATHEMATICS, 2007, 307 (06) :764-768
[8]   Highly parity linked graphs [J].
Kawarabayashi, Ken-Ichi ;
Reed, Bruce .
COMBINATORICA, 2009, 29 (02) :215-225
[9]   Disjoint A-paths in digraphs [J].
Kriesell, M .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 2005, 95 (01) :168-172
[10]   MAXIMUM NUMBER OF UN-INTERSECTED H-PATHS [J].
MADER, W .
ARCHIV DER MATHEMATIK, 1978, 31 (04) :387-402