DYNESTY: a dynamic nested sampling package for estimating Bayesian posteriors and evidences

被引:1514
作者
Speagle, Joshua S. [1 ]
机构
[1] Harvard Smithsonian Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA
关键词
methods: data analysis; methods: statistical; MONTE-CARLO METHODS; INFERENCE; EFFICIENT; TOOL; SKY;
D O I
10.1093/mnras/staa278
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We present DYNESTY, a public, open-source, PYTHON package to estimate Bayesian posteriors and evidences (marginal likelihoods) using the dynamic nested sampling methods developed by Higson et al. By adaptively allocating samples based on posterior structure, dynamic nested sampling has the benefits of Markov chain Monte Carlo (MCMC) algorithms that focus exclusively on posterior estimation while retaining nested sampling's ability to estimate evidences and sample from complex, multimodal distributions. We provide an overview of nested sampling, its extension to dynamic nested sampling, the algorithmic challenges involved, and the various approaches taken to solve them in this and previous work. We then examine DYNESTY's performance on a variety of toy problems along with several astronomical applications. We find in particular problems DYNESTY can provide substantial improvements in sampling efficiency compared to popular MCMC approaches in the astronomical literature. More detailed statistical results related to nested sampling are also included in the appendix.
引用
收藏
页码:3132 / 3158
页数:27
相关论文
共 70 条
[1]   Planck 2015 results XIII. Cosmological parameters [J].
Ade, P. A. R. ;
Aghanim, N. ;
Arnaud, M. ;
Ashdown, M. ;
Aumont, J. ;
Baccigalupi, C. ;
Banday, A. J. ;
Barreiro, R. B. ;
Bartlett, J. G. ;
Bartolo, N. ;
Battaner, E. ;
Battye, R. ;
Benabed, K. ;
Benoit, A. ;
Benoit-Levy, A. ;
Bernard, J. -P. ;
Bersanelli, M. ;
Bielewicz, P. ;
Bock, J. J. ;
Bonaldi, A. ;
Bonavera, L. ;
Bond, J. R. ;
Borrill, J. ;
Bouchet, F. R. ;
Boulanger, F. ;
Bucher, M. ;
Burigana, C. ;
Butler, R. C. ;
Calabrese, E. ;
Cardoso, J. -F. ;
Catalano, A. ;
Challinor, A. ;
Chamballu, A. ;
Chary, R. -R. ;
Chiang, H. C. ;
Chluba, J. ;
Christensen, P. R. ;
Church, S. ;
Clements, D. L. ;
Colombi, S. ;
Colombo, L. P. L. ;
Combet, C. ;
Coulais, A. ;
Crill, B. P. ;
Curto, A. ;
Cuttaia, F. ;
Danese, L. ;
Davies, R. D. ;
Davis, R. J. ;
de Bernardis, P. .
ASTRONOMY & ASTROPHYSICS, 2016, 594
[2]  
[Anonymous], 2018, APJ, DOI DOI 10.3847/1538-4357/AAA8DB
[3]  
[Anonymous], 2011, ARXIV11114246
[4]  
[Anonymous], 2009, ARXIV09122380
[5]  
[Anonymous], 2012, ARXIV12061901
[6]   BILBY: A User-friendly Bayesian Inference Library for Gravitational-wave Astronomy [J].
Ashton, Gregory ;
Hubner, Moritz ;
Lasky, Paul D. ;
Talbot, Colm ;
Ackley, Kendall ;
Biscoveanu, Sylvia ;
Chu, Qi ;
Divakarla, Atul ;
Easter, Paul J. ;
Goncharov, Boris ;
Vivanco, Francisco Hernandez ;
Harms, Jan ;
Lower, Marcus E. ;
Meadors, Grant D. ;
Melchor, Denyz ;
Payne, Ethan ;
Pitkin, Matthew D. ;
Powel, Jade ;
Sarin, Nikhil ;
Smith, Rory J. E. ;
Thrane, Eric .
ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 2019, 241 (02)
[7]  
Betancourt M., 2017, ARXIV170102434
[8]   Variational Inference: A Review for Statisticians [J].
Blei, David M. ;
Kucukelbir, Alp ;
McAuliffe, Jon D. .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2017, 112 (518) :859-877
[9]  
Blitzstein J. K., 2014, CHAPMAN HALL CRC TEX, P385, DOI [10.1201/b17221, DOI 10.1201/B17221]
[10]  
Borne K., 2009, astro2010: The Astronomy and Astrophysics Decadal Survey, Vvol, p6P