A Wideband Noise and Harmonic Distortion Canceling Low-Noise Amplifier for High-Frequency Ultrasound Transducers

被引:2
作者
Tang, Yuxuan [1 ]
Feng, Yulang [1 ]
Hu, He [2 ]
Fang, Cheng [2 ]
Deng, Hao [1 ]
Zhang, Runxi [3 ]
Zou, Jun [2 ]
Chen, Jinghong [1 ]
机构
[1] Univ Houston, Dept Elect & Comp Engn, Houston, TX 77004 USA
[2] Texas A&M Univ, Dept Elect & Comp Engn, College Stn, TX 77843 USA
[3] East China Normal Univ, Sch Commun & Elect Engn, Shanghai 200241, Peoples R China
关键词
high-frequency ultrasound transducers; low-noise amplifier; noise cancellation; harmonic distortion cancellation; resistive shunt-feedback amplifier; wideband impedance matching; CHIP;
D O I
10.3390/s21248476
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
This paper presents a wideband low-noise amplifier (LNA) front-end with noise and distortion cancellation for high-frequency ultrasound transducers. The LNA employs a resistive shunt-feedback structure with a feedforward noise-canceling technique to accomplish both wideband impedance matching and low noise performance. A complementary CMOS topology was also developed to cancel out the second-order harmonic distortion and enhance the amplifier linearity. A high-frequency ultrasound (HFUS) and photoacoustic (PA) imaging front-end, including the proposed LNA and a variable gain amplifier (VGA), was designed and fabricated in a 180 nm CMOS process. At 80 MHz, the front-end achieves an input-referred noise density of 1.36 nV/sqrt (Hz), an input return loss (S-11) of better than -16 dB, a voltage gain of 37 dB, and a total harmonic distortion (THD) of -55 dBc while dissipating a power of 37 mW, leading to a noise efficiency factor (NEF) of 2.66.
引用
收藏
页数:17
相关论文
共 32 条
[1]   A 3-D High-Frequency Array Based 16 Channel Photoacoustic Microscopy System for In Vivo Micro- Vascular Imaging [J].
Bitton, Rachel ;
Zemp, Roger ;
Yen, Jesse ;
Wang, Lihong V. ;
Shung, K. Kirk .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2009, 28 (08) :1190-1197
[2]   Wide-band CMOS low-noise amplifier exploiting thermal noise canceling [J].
Bruccoleri, F ;
Klumperink, EAM ;
Nauta, B .
IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2004, 39 (02) :275-282
[3]   Design and Analysis of MEMS Based PVDF Ultrasonic Transducers for Vascular Imaging [J].
Chandrana, Chaitanya ;
Talman, James ;
Pan, Tao ;
Roy, Shuvo ;
Fleischman, Aaron .
SENSORS, 2010, 10 (09) :8740-8750
[4]   ESD-protected wideband CMOS LNAs using modified resistive feedback techniques with chip-on-board packaging [J].
Chang, Tienyu ;
Chen, Jinghong ;
Rigge, Lawrence A. ;
Lin, Jenshan .
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2008, 56 (08) :1817-1826
[5]   Photoacoustic and high-frequency ultrasound imaging of systemic sclerosis patients [J].
Daoudi, Khalid ;
Kersten, Brigit E. ;
van den Ende, Cornelia H. M. ;
van den Hoogen, Frank H. J. ;
Vonk, Madelon C. ;
de Korte, Chris L. .
ARTHRITIS RESEARCH & THERAPY, 2021, 23 (01)
[6]  
Diao JG, 2019, MIDWEST SYMP CIRCUIT, P1171, DOI [10.1109/mwscas.2019.8885304, 10.1109/MWSCAS.2019.8885304]
[7]  
Eriksrod J., 2013, PROC EUR C CIRCUIT T, P1
[8]   A history of medical and biological imaging with polyvinylidene fluoride (PVDF) transducers [J].
Foster, FS ;
Harasiewicz, EA ;
Sherar, MD .
IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL, 2000, 47 (06) :1363-1371
[9]   A Wideband Low-Power-Consumption 22-32.5-GHz 0.18-μm BiCMOS Active Balun-LNA With IM2 Cancellation Using a Transformer-Coupled Cascode-Cascade Topology [J].
Geha, Chadi ;
Nguyen, Cam ;
Silva-Martinez, Jose .
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2017, 65 (02) :536-547
[10]   Integrated intravascular ultrasound and photoacoustic imaging scan head [J].
Hsieh, Bao-Yu ;
Chen, Sung-Liang ;
Ling, Tao ;
Guo, L. Jay ;
Li, Pai-Chi .
OPTICS LETTERS, 2010, 35 (17) :2892-2894