Klein's programme and quantum mechanics

被引:0
作者
Clemente-Gallardo, Jesus [1 ]
Marmo, Giuseppe [2 ,3 ]
机构
[1] Univ Zaragoza, BIFI, Dept Fis Teor, Zaragoza 50018, Spain
[2] Univ Naples Federico II, Dipartimento Fis, I-80126 Naples, Italy
[3] Ist Nazl Fis Nucl, Sez Napoli, I-80126 Naples, Italy
关键词
Geometric quantum mechanics; open quantum systems; Klein programme; DYNAMICAL SEMIGROUPS; GEOMETRIZATION; ENTANGLEMENT; SYSTEMS;
D O I
10.1142/S0219887815600063
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We review the geometrical formulation of quantum mechanics to identify, according to Klein's programme, the corresponding group of transformations. For closed systems, it is the unitary group. For open quantum systems, the semigroup of Kraus maps contains, as a maximal subgroup, the general linear group. The same group emerges as the exponentiation of the C*-algebra associated with the quantum system, when thought of as a Lie algebra. Thus, open quantum systems seem to identify the general linear group as associated with quantum mechanics and moreover suggest to extend the Klein programme also to groupoids. The usual unitary group emerges as a maximal compact subgroup of the general linear group.
引用
收藏
页数:29
相关论文
共 14 条
[1]   Poisson structures on double Lie groups [J].
Alekseevsky, D ;
Grabowski, J ;
Marmo, G ;
Michor, PW .
JOURNAL OF GEOMETRY AND PHYSICS, 1998, 26 (3-4) :340-379
[2]  
[Anonymous], B AM MATH SOC
[3]   Geometrization of quantum mechanics [J].
Carinena, J. F. ;
Clemente-Gallardo, J. ;
Marmo, G. .
THEORETICAL AND MATHEMATICAL PHYSICS, 2007, 152 (01) :894-903
[4]  
Carinena J. F., 2015, GEOMETRY DYNAMICS CL
[5]  
Clemente-Gallardo J., 2007, DIFFERENTIAL GEOMETR, P35
[6]   BASICS OF QUANTUM MECHANICS, GEOMETRIZATION AND SOME APPLICATIONS TO QUANTUM INFORMATION [J].
Clemente-Gallardo, Jesus .
INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2008, 5 (06) :989-1032
[7]   From the equations of motion to the canonical commutation relations [J].
Ercolessi, E. ;
Marmo, G. ;
Morandi, G. .
RIVISTA DEL NUOVO CIMENTO, 2010, 33 (8-9) :401-590
[8]   COMPLETELY POSITIVE DYNAMICAL SEMIGROUPS OF N-LEVEL SYSTEMS [J].
GORINI, V ;
KOSSAKOWSKI, A ;
SUDARSHAN, ECG .
JOURNAL OF MATHEMATICAL PHYSICS, 1976, 17 (05) :821-825
[9]   Geometry of quantum systems: density states and entanglement [J].
Grabowski, J ;
Kus, M ;
Marmo, G .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2005, 38 (47) :10217-10244
[10]   Symmetries, group actions, and entanglement [J].
Grabowski, Janusz ;
Kus, Marek ;
Marmo, Giuseppe .
OPEN SYSTEMS & INFORMATION DYNAMICS, 2006, 13 (04) :343-362