Self-Organization of Weighted Networks for Optimal Synchronizability

被引:19
作者
Kempton, Louis [1 ]
Herrmann, Guido [2 ]
di Bernardo, Mario [3 ,4 ]
机构
[1] Univ Bristol, Bristol Ctr Complex Sci, Bristol BS8 1TH, Avon, England
[2] Univ Bristol, Dept Mech Engn, Bristol BS8 1TH, Avon, England
[3] Univ Bristol, Dept Engn Math, Bristol BS8 1TH, Avon, England
[4] Univ Naples Federico II, Dept Elect Engn & Informat Technol, I-80138 Naples, Italy
来源
IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS | 2018年 / 5卷 / 04期
基金
英国工程与自然科学研究理事会;
关键词
Complex networks; decentralized control; optimization; TOPOLOGY DESIGN; CONSENSUS; SYSTEMS;
D O I
10.1109/TCNS.2017.2732161
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We show that a network can self-organize its existing topology, i.e., by adapting edge weights, in a completely decentralized manner in order to maximize its synchronizability while satisfying local constraints: we look specifically at nonnegativity of edge weights and maximum weighted degree of nodes. A novel multilayer approach is presented, which uses a decentralized strategy through which each node can estimate one of two spectral functions of the graph Laplacian, the algebraic connectivity lambda(2), or the eigenratio r=lambda(n)/lambda(2). These local estimates are then used to evolve the edge weights so as to maximize lambda(2), or minimize r, and, hence, achieve globally optimal values for the edge weights for the synchronization of a network of coupled systems.
引用
收藏
页码:1541 / 1550
页数:10
相关论文
共 35 条
  • [1] [Anonymous], 1983, Z OPER RES, DOI DOI 10.1007/BF01916898
  • [2] [Anonymous], 2011, DECENTRALIZED CONTRO
  • [3] Synchronization in small-world systems
    Barahona, M
    Pecora, LM
    [J]. PHYSICAL REVIEW LETTERS, 2002, 89 (05) : 054101/1 - 054101/4
  • [4] Bertrand A., 2013, P 21 EUR SIGN PROC C, P1
  • [5] Boyd S., 2006, P INT C MATHEMATICIA, P1311
  • [6] Cortical plasticity: From synapses to maps
    Buonomano, DV
    Merzenich, MM
    [J]. ANNUAL REVIEW OF NEUROSCIENCE, 1998, 21 : 149 - 186
  • [7] Network synchronizability analysis: A graph-theoretic approach
    Chen, Guanrong
    Duan, Zhisheng
    [J]. CHAOS, 2008, 18 (03)
  • [8] Cortical rewiring and information storage
    Chklovskii, DB
    Mel, BW
    Svoboda, K
    [J]. NATURE, 2004, 431 (7010) : 782 - 788
  • [9] From Fireflies to Fault-Tolerant Swarms of Robots
    Christensen, Anders Lyhne
    O'Grady, Rehan
    Dorigo, Marco
    [J]. IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2009, 13 (04) : 754 - 766
  • [10] Synchronizability of complex networks
    Comellas, Francesc
    Gago, Silvia
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (17) : 4483 - 4492