On Elliptic Homogeneous Differential Operators in Grand Spaces

被引:2
作者
Umarkhadzhiev, S. M. [1 ]
机构
[1] Russian Acad Sci, Kh Ibrahimov Complex Sci Res Inst, Acad Sci Chechen Republ, 13 M Esembaev Ave, Grozny 364024, Russia
基金
俄罗斯基础研究基金会;
关键词
elliptic homogeneous differential operator; grand Lebesgue space; grand Sobolev space; grandizer; fundamental solution; spherical hypersingular integral; IWANIEC-SBORDONE SPACES; INTEGRAL-OPERATORS; LEBESGUE SPACES; BOUNDEDNESS; SETS;
D O I
10.3103/S1066369X20030056
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give an application of so-called grand Lebesgue and grand Sobolev spaces, intensively studied during last decades, to partial differential equations. In the case of unbounded domains such spaces are defined using so-called grandizers. Under some natural assumptions on the choice of grandizers, we prove the existence, in some grand Sobolev space, of a solution to the equation P-m(D)u(x) = f(x), x is an element of Double-struck capital R-n, m < n, with the right-hand side in the corresponding grand Lebesgue space, where P-m(D) is an arbitrary elliptic homogeneous in the general case we improve some known facts for the fundamental solution of the operator P-m(D): we construct it in the closed form either in terms of spherical hypersingular integrals or in terms of some averages along plane sections of the unit sphere.
引用
收藏
页码:57 / 65
页数:9
相关论文
共 31 条
[1]   The maximal theorem for weighted grand Lebesgue spaces [J].
Fiorenza, Alberto ;
Gupta, Babita ;
Jain, Pankaj .
STUDIA MATHEMATICA, 2008, 188 (02) :123-133
[2]  
Gel'fand I.M., 1955, Uspekhi Matematicheskikh Nauk, V10, P3
[3]   Inverting the p-harmonic operator [J].
Greco, L ;
Iwaniec, T ;
Sbordone, C .
MANUSCRIPTA MATHEMATICA, 1997, 92 (02) :249-258
[4]   ON THE INTEGRABILITY OF THE JACOBIAN UNDER MINIMAL HYPOTHESES [J].
IWANIEC, T ;
SBORDONE, C .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1992, 119 (02) :129-143
[5]  
IWANIEC T, 1994, J REINE ANGEW MATH, V454, P143
[6]  
Kokilashvili V., 2015, INTEGRAL OPERATORS N, V1, P1
[7]   Boundedness criteria for singular integrals in weighted grand lebesgue spaces [J].
Kokilashvili V. .
Journal of Mathematical Sciences, 2010, 170 (1) :20-33
[8]   Weighted extrapolation in Iwaniec-Sbordone spaces. Applications to integral operators and approximation theory [J].
Kokilashvili, V. M. ;
Meskhi, A. N. .
PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2016, 293 (01) :161-185
[9]  
Kokilashvili V, 2016, OPER THEORY ADV APPL, V249, P571, DOI 10.1007/978-3-319-21018-6_1
[10]  
Kokilashvili V, 2009, GEORGIAN MATH J, V16, P547