Image denoising through support vector regression

被引:0
作者
Li, Dalong [1 ]
Simske, Steven [1 ]
Mersereau, Russell M. [2 ]
机构
[1] Hewlett Packard Labs, Digital Printing & Imaging Lab, Ft Collins, CO 80528 USA
[2] Georgia Inst Technol, Ctr Signal & Image Proc, Sch Elect & Comp Engn, Atlanta, GA 30332 USA
来源
2007 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOLS 1-7 | 2007年
关键词
image denoising; support vector regression; wavelet; PSNR;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, an example-based image denoising algorithm is introduced. Image denoising is formulated as a regression problem, which is then solved using support vector regression (SVR). Using noisy images as training sets, SVR models are developed. The models can then be used to denoise different images corrupted by random noise at different levels. Initial experiments show that SVR can achieve a higher peak signal-to-noise ratio (PSNR) than the multiple wavelet domain Besov ball projection method on document images.
引用
收藏
页码:2121 / +
页数:2
相关论文
共 12 条
[1]   A steerable complex wavelet construction and its application to image denoising [J].
Bharath, AA ;
Ng, J .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2005, 14 (07) :948-959
[2]  
CHANG CC, 2001, LIBSVM LIB SUPP VECT
[3]   Spatially adaptive wavelet thresholding with context modeling for image denoising [J].
Chang, SG ;
Yu, B ;
Vetterli, M .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2000, 9 (09) :1522-1531
[4]   Multiple wavelet basis image denoising using Besov ball projections [J].
Choi, H ;
Baraniuk, RG .
IEEE SIGNAL PROCESSING LETTERS, 2004, 11 (09) :717-720
[5]   Improved wavelet denoising via empirical Wiener filtering [J].
Ghael, SP ;
Sayeed, AM ;
Baraniuk, RG .
WAVELET APPLICATIONS IN SIGNAL AND IMAGE PROCESSING V, 1997, 3169 :389-399
[6]   Fractal image denoising [J].
Ghazel, M ;
Freeman, GH ;
Vrscay, ER .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2003, 12 (12) :1560-1578
[7]  
Ishwar P, 1998, INT CONF ACOUST SPEE, P1889, DOI 10.1109/ICASSP.1998.681833
[8]   Noise removal using smoothed normals and surface fitting [J].
Lysaker, M ;
Osher, S ;
Tai, XC .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2004, 13 (10) :1345-1357
[9]   Image denoising using scale mixtures of Gaussians in the wavelet domain [J].
Portilla, J ;
Strela, V ;
Wainwright, MJ ;
Simoncelli, EP .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2003, 12 (11) :1338-1351
[10]  
*U S CAL SIGN IM P, USC SIPI IM DAT