A Unstructured Nodal Spectral-Element Method for the Navier-Stokes Equations

被引:14
|
作者
Chen, Lizhen [1 ]
Shen, Jie [1 ,2 ]
Xu, Chuanju [1 ]
机构
[1] Xiamen Univ, Sch Math Sci, Xiamen 361005, Peoples R China
[2] Purdue Univ, Dept Math, W Lafayette, IN 47907 USA
关键词
Navier-Stokes equations; unstructured mesh; triangular spectral element method; INTERPOLATION; TRIANGLE; FLOW;
D O I
10.4208/cicp.070111.140711a
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
An unstructured nodal spectral-element method for the Navier-Stokes equations is developed in this paper. The method is based on a triangular and tetrahedral rational approximation and an easy-to-implement nodal basis which fully enjoys the tensorial product property. It allows arbitrary triangular and tetrahedral mesh, affording greater flexibility in handling complex domains while maintaining all essential features of the usual spectral-element method. The details of the implementation and some numerical examples are provided to validate the efficiency and flexibility of the proposed method.
引用
收藏
页码:315 / 336
页数:22
相关论文
共 50 条
  • [31] A finite element method for the resolution of the Reduced Navier-Stokes/Prandtl equations
    Barrenechea, Gabriel R.
    Chouly, Franz
    ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2009, 89 (01): : 54 - 68
  • [32] Local projection stabilized finite element method for Navier-Stokes equations
    覃燕梅
    冯民富
    罗鲲
    吴开腾
    Applied Mathematics and Mechanics(English Edition), 2010, 31 (05) : 651 - 664
  • [33] Study of Multiple Solutions for the Navier-Stokes Equations by a Finite Element Method
    Xu, Huanxia
    Lin, Ping
    Si, Xinhui
    NUMERICAL MATHEMATICS-THEORY METHODS AND APPLICATIONS, 2014, 7 (01) : 107 - 122
  • [34] Adaptive Local Postprocessing Finite Element Method for the Navier-Stokes Equations
    Song, Lina
    Hou, Yanren
    Zheng, Haibiao
    JOURNAL OF SCIENTIFIC COMPUTING, 2013, 55 (02) : 255 - 267
  • [35] Local projection stabilized finite element method for Navier-Stokes equations
    Yan-mei Qin
    Min-fu Feng
    Kun Luo
    Kai-teng Wu
    Applied Mathematics and Mechanics, 2010, 31 : 651 - 664
  • [36] A superconvergent nonconforming mixed finite element method for the Navier-Stokes equations
    Ren, Jincheng
    Ma, Yue
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2016, 32 (02) : 646 - 660
  • [37] Dynamically adaptive spectral-element simulations of 2D incompressible Navier-Stokes vortex decays
    Fournier, Aime
    Rosenberg, Duane
    Pouquet, Annick
    GEOPHYSICAL AND ASTROPHYSICAL FLUID DYNAMICS, 2009, 103 (2-3) : 245 - 268
  • [38] Adaptive Local Postprocessing Finite Element Method for the Navier-Stokes Equations
    Lina Song
    Yanren Hou
    Haibiao Zheng
    Journal of Scientific Computing, 2013, 55 : 255 - 267
  • [39] Local projection stabilized finite element method for Navier-Stokes equations
    Qin, Yan-mei
    Feng, Min-fu
    Luo, Kun
    Wu, Kai-teng
    APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2010, 31 (05) : 651 - 664
  • [40] Superconvergence of a nonconforming finite element method for the stationary Navier-Stokes equations
    Huang, Pengzhan
    Ma, Xiaoling
    Zhang, Tong
    BULLETIN MATHEMATIQUE DE LA SOCIETE DES SCIENCES MATHEMATIQUES DE ROUMANIE, 2016, 59 (02): : 159 - 174