A Unstructured Nodal Spectral-Element Method for the Navier-Stokes Equations

被引:14
|
作者
Chen, Lizhen [1 ]
Shen, Jie [1 ,2 ]
Xu, Chuanju [1 ]
机构
[1] Xiamen Univ, Sch Math Sci, Xiamen 361005, Peoples R China
[2] Purdue Univ, Dept Math, W Lafayette, IN 47907 USA
关键词
Navier-Stokes equations; unstructured mesh; triangular spectral element method; INTERPOLATION; TRIANGLE; FLOW;
D O I
10.4208/cicp.070111.140711a
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
An unstructured nodal spectral-element method for the Navier-Stokes equations is developed in this paper. The method is based on a triangular and tetrahedral rational approximation and an easy-to-implement nodal basis which fully enjoys the tensorial product property. It allows arbitrary triangular and tetrahedral mesh, affording greater flexibility in handling complex domains while maintaining all essential features of the usual spectral-element method. The details of the implementation and some numerical examples are provided to validate the efficiency and flexibility of the proposed method.
引用
收藏
页码:315 / 336
页数:22
相关论文
共 50 条
  • [21] Analysis of a streamline diffusion finite element method for the Stokes and Navier-Stokes equations
    Tobiska, L
    Verfurth, R
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 1996, 33 (01) : 107 - 127
  • [22] On Kato's Method for Navier-Stokes Equations
    Haak, Bernhard H.
    Kunstmann, Peer Chr.
    JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2009, 11 (04) : 492 - 535
  • [23] AN AUGMENTED MIXED FINITE ELEMENT METHOD FOR THE NAVIER-STOKES EQUATIONS WITH VARIABLE VISCOSITY
    Camano, Jessika
    Gatica, Gabriel N.
    Oyarzua, Ricardo
    Tierra, Giordano
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2016, 54 (02) : 1069 - 1092
  • [24] Boundary element analysis of Navier-Stokes equations
    Matsunashi, J.
    Okamoto, N.
    Futagami, T.
    ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2012, 36 (03) : 471 - 476
  • [25] Higher order spectral/hp finite element models of the Navier-Stokes equations
    Vallalaa, V. P.
    Sadr, R.
    Reddy, J. N.
    INTERNATIONAL JOURNAL OF COMPUTATIONAL FLUID DYNAMICS, 2014, 28 (1-2) : 16 - 30
  • [26] AN ALGEBRAIC MULTIGRID SOLVER FOR THE NAVIER-STOKES EQUATIONS ON UNSTRUCTURED MESHES
    Lonsdale, R. D.
    INTERNATIONAL JOURNAL OF NUMERICAL METHODS FOR HEAT & FLUID FLOW, 1993, 3 (01) : 3 - 14
  • [27] Stabilized finite-element method for the stationary Navier-Stokes equations
    Yinnian He
    Aiwen Wang
    Liquan Mei
    Journal of Engineering Mathematics, 2005, 51 : 367 - 380
  • [28] Stabilized finite-element method for the stationary Navier-Stokes equations
    He, YN
    Wang, AW
    Mei, LQ
    JOURNAL OF ENGINEERING MATHEMATICS, 2005, 51 (04) : 367 - 380
  • [29] The postprocessed mixed finite-element method for the Navier-Stokes equations
    Ayuso, B
    García-Archilla, B
    Novo, J
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2005, 43 (03) : 1091 - 1111
  • [30] A MIXED FINITE ELEMENT METHOD ON A STAGGERED MESH FOR NAVIER-STOKES EQUATIONS
    Houde Han Ming Yan Department of Mathematics
    Journal of Computational Mathematics, 2008, 26 (06) : 816 - 824