Aqueous Synthesis of Compressible and Thermally Stable Cellulose Nanofibri-Silica Aerogel for CO2 Adsorption

被引:50
作者
Jiang, Feng [1 ,2 ]
Hu, Sixiao [1 ]
Hsieh, You-lo [1 ]
机构
[1] Univ Calif Davis, Fiber & Polymer Sci, Davis, CA 95616 USA
[2] Univ British Columbia, Dept Wood Sci, Vancouver, BC V6T 1Z4, Canada
来源
ACS APPLIED NANO MATERIALS | 2018年 / 1卷 / 12期
关键词
cellulose nanofibril; silica; aerogel; sol-gel synthesis; CO2; adsorption; NANOCELLULOSE AEROGELS; FLEXIBLE AEROGELS; SHAPE RECOVERY; CAPTURE; FABRICATION; LIGHTWEIGHT; LONG; AIR;
D O I
10.1021/acsanm.8b01515
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Cellulose nanofibrils (CNF)-silica aerogels have been facilely synthesized via a one-step in situ aqueous sol gel process of polymerizing and aging the silica precursor in the presence of CNFs to encompass the superior dry compressive strength and flexibility of CNF aerogels and the thermal stability of silica aerogels. Sodium silicate (Na2SiO3) was hydrolyzed and polymerized in the presence of CNFs at varied ratios to synthesize hydrogels whose storage and loss modulus confirmed CNFs to function as the structural skeleton. At the optimal 8:2 CNFs/Na2SiO3 composition, the hydrogels with homogeneously dispersed silica and CNF can be freeze-dried into hierarchically mesoporous aerogels with ultralow density of 7.7 mg/cm(3), high specific surface of 342 m(2)/g, and pore volume of 0.86 cm(3)/g. This robust sol gel approach employs naturally abundant silica and cellulose in aqueous system to generate improved CNF-silica aerogels that had much higher compressive strength and modulus of up to 28.5 and 177 kPa and structural flexibility than silica aerogel and enhanced thermal stability and specific surface over CNF aerogel. Further functionalization of CNF silica aerogels via organosilane reaction introduced primary amine groups capable of capturing CO2 with an adsorption capacity of 1.49 mmol/g.
引用
收藏
页码:6701 / 6710
页数:19
相关论文
共 52 条
[1]   SOL-]GEL-]GLASS .2. PHYSICAL AND STRUCTURAL EVOLUTION DURING CONSTANT HEATING RATE EXPERIMENTS [J].
BRINKER, CJ ;
SCHERER, GW ;
ROTH, EP .
JOURNAL OF NON-CRYSTALLINE SOLIDS, 1985, 72 (2-3) :345-368
[2]   Cellulose-Silica Nanocomposite Aerogels by In Situ Formation of Silica in Cellulose Gel [J].
Cai, Jie ;
Liu, Shilin ;
Feng, Jiao ;
Kimura, Satoshi ;
Wada, Masahisa ;
Kuga, Shigenori ;
Zhang, Lina .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2012, 51 (09) :2076-2079
[3]   Lightweight and Strong Cellulose Materials Made from Aqueous Foams Stabilized by Nanofibrillated Cellulose [J].
Cervin, Nicholas T. ;
Andersson, Linnea ;
Ng, Jovice Boon Sing ;
Olin, Pontus ;
Bergstrom, Lennart ;
Wagberg, Lars .
BIOMACROMOLECULES, 2013, 14 (02) :503-511
[4]   Ultra porous nanocellulose aerogels as separation medium for mixtures of oil/water liquids [J].
Cervin, Nicholas Tchang ;
Aulin, Christian ;
Larsson, Per Tomas ;
Wagberg, Lars .
CELLULOSE, 2012, 19 (02) :401-410
[5]   Comparative Study of Aerogels Obtained from Differently Prepared Nanocellulose Fibers [J].
Chen, Wenshuai ;
Li, Qing ;
Wang, Youcheng ;
Yi, Xin ;
Zeng, Jie ;
Yu, Haipeng ;
Liu, Yixing ;
Li, Jian .
CHEMSUSCHEM, 2014, 7 (01) :154-161
[6]   Ultralight and highly flexible aerogels with long cellulose I nanofibers [J].
Chen, Wenshuai ;
Yu, Haipeng ;
Li, Qing ;
Liu, Yixing ;
Li, Jian .
SOFT MATTER, 2011, 7 (21) :10360-10368
[7]   Cellulose-silica aerogels [J].
Demilecamps, Arnaud ;
Beauger, Christian ;
Hildenbrand, Claudia ;
Rigacci, Arnaud ;
Budtova, Tatiana .
CARBOHYDRATE POLYMERS, 2015, 122 :293-300
[8]   Cellulose-silica composite aerogels from "one-pot" synthesis [J].
Demilecamps, Arnaud ;
Reichenauer, Gudrun ;
Rigacci, Arnaud ;
Budtova, Tatiana .
CELLULOSE, 2014, 21 (04) :2625-2636
[9]   Silica aerogel; synthesis, properties and characterization [J].
Dorcheh, A. Soleimani ;
Abbasi, M. H. .
JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2008, 199 (1-3) :10-26
[10]  
Fu J. J, 2016, RSC ADV, V6