Storing quantum information in spins and high-sensitivity ESR

被引:46
作者
Morton, John J. L. [1 ,2 ]
Bertet, Patrice [3 ]
机构
[1] UCL, London Ctr Nanotechnol, London WC1H 0AH, England
[2] UCL, Dept Elect & Elect Engn, London WC1E 7JE, England
[3] Univ Paris Saclay, CEA Saclay, CNRS, CEA,SPEC,Quantron Grp, F-91191 Gif Sur Yvette, France
基金
英国工程与自然科学研究理事会;
关键词
Spin decoherence; Quantum information; Quantum memory; Superconducting resonators; High sensitivity ESR; MEMORY; QUBIT; RELAXATION; STORAGE; ENSEMBLES; REPEATERS; COHERENCE;
D O I
10.1016/j.jmr.2017.11.015
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Quantum information, encoded within the states of quantum systems, represents a novel and rich form of information which has inspired new types of computers and communications systems. Many diverse electron spin systems have been studied with a view to storing quantum information, including molecular radicals, point defects and impurities in inorganic systems, and quantum dots in semiconductor devices. In these systems, spin coherence times can exceed seconds, single spins can be addressed through electrical and optical methods, and new spin systems with advantageous properties continue to be identified. Spin ensembles strongly coupled to microwave resonators can, in principle, be used to store the coherent states of single microwave photons, enabling so-called microwave quantum memories. We discuss key requirements in realising such memories, including considerations for superconducting resonators whose frequency can be tuned onto resonance with the spins. Finally, progress towards microwave quantum memories and other developments in the field of superconducting quantum devices are being used to push the limits of sensitivity of inductively-detected electron spin resonance. The state-of-the-art currently stands at around 65 spins per root Hz, with prospects to scale down to even fewer spins. (C) 2017 Published by Elsevier Inc.
引用
收藏
页码:128 / 139
页数:12
相关论文
共 93 条
[1]  
Abe E., APPL PHYS LETT
[2]   SPIN ECHO SERIAL STORAGE MEMORY [J].
ANDERSON, AG ;
GARWIN, RL ;
HAHN, EL ;
HORTON, JW ;
TUCKER, GL ;
WALKER, RM .
JOURNAL OF APPLIED PHYSICS, 1955, 26 (11) :1324-1338
[3]   Determination of the Avogadro Constant by Counting the Atoms in a 28Si Crystal [J].
Andreas, B. ;
Azuma, Y. ;
Bartl, G. ;
Becker, P. ;
Bettin, H. ;
Borys, M. ;
Busch, I. ;
Gray, M. ;
Fuchs, P. ;
Fujii, K. ;
Fujimoto, H. ;
Kessler, E. ;
Krumrey, M. ;
Kuetgens, U. ;
Kuramoto, N. ;
Mana, G. ;
Manson, P. ;
Massa, E. ;
Mizushima, S. ;
Nicolaus, A. ;
Picard, A. ;
Pramann, A. ;
Rienitz, O. ;
Schiel, D. ;
Valkiers, S. ;
Waseda, A. .
PHYSICAL REVIEW LETTERS, 2011, 106 (03)
[4]  
[Anonymous], 1985, IBM Technical Disclosure Bulletin, V28, P3153
[5]   Multi-frequency spin manipulation using rapidly tunable superconducting coplanar waveguide microresonators [J].
Asfaw, A. T. ;
Sigillito, A. J. ;
Tyryshkin, A. M. ;
Schenkel, T. ;
Lyon, S. A. .
APPLIED PHYSICS LETTERS, 2017, 111 (03)
[6]  
Balasubramanian G, 2009, NAT MATER, V8, P383, DOI [10.1038/nmat2420, 10.1038/NMAT2420]
[7]   Solid-state electronic spin coherence time approaching one second [J].
Bar-Gill, N. ;
Pham, L. M. ;
Jarmola, A. ;
Budker, D. ;
Walsworth, R. L. .
NATURE COMMUNICATIONS, 2013, 4
[8]  
Becker J. N., ALL OPTICAL CONTROL
[9]   Rare-earth solid-state qubits [J].
Bertaina, S. ;
Gambarelli, S. ;
Tkachuk, A. ;
Kurkin, I. N. ;
Malkin, B. ;
Stepanov, A. ;
Barbara, B. .
NATURE NANOTECHNOLOGY, 2007, 2 (01) :39-42
[10]   Quantum Nonlinear Optics with a Germanium-Vacancy Color Center in a Nanoscale Diamond Waveguide [J].
Bhaskar, M. K. ;
Sukachev, D. D. ;
Sipahigil, A. ;
Evans, R. E. ;
Burek, M. J. ;
Nguyen, C. T. ;
Rogers, L. J. ;
Siyushev, P. ;
Metsch, M. H. ;
Park, H. ;
Jelezko, F. ;
Loncar, M. ;
Lukin, M. D. .
PHYSICAL REVIEW LETTERS, 2017, 118 (22)