The Yermak Pass Branch: A Major Pathway for the Atlantic Water North of Svalbard?

被引:37
作者
Koenig, Zoe [1 ]
Provost, Christine [1 ]
Sennechael, Nathalie [1 ]
Garric, Gilles [2 ]
Gascard, Jean-Claude [1 ]
机构
[1] Univ Paris 06, UPMC, CNRS IRD MNHN, Lab LOCEAN IPSL,Sorbonne Univ, Paris, France
[2] Mercator Ocean, Res & Dev, Ramonville St Agne, France
关键词
Atlantic Water inflow; ADCP data; Yermak Plateau; tides and residual currents; Arctic Ocean; model; observations comparison; ARCTIC-OCEAN; FRAM STRAIT; HEAT FLUXES; DATA ASSIMILATION; INTERNAL WAVES; SEA-ICE; PLATEAU; VARIABILITY; SPITSBERGEN; RECIRCULATION;
D O I
10.1002/2017JC013271
中图分类号
P7 [海洋学];
学科分类号
0707 ;
摘要
An upward-looking Acoustic Doppler Current Profiler deployed from July 2007 to September 2008 in the Yermak Pass, north of Svalbard, gathered velocity data from 570 m up to 90 m at a location covered by sea ice 10 months out of 12. Barotropic diurnal and semidiurnal tides are the dominant signals in the velocity (more than 70% of the velocity variance). In winter, baroclinic eddies at periods between 5 and 15 days and pulses of 1-2 month periodicity are observed in the Atlantic Water layer and are associated with a shoaling of the pycnocline. Mercator-Ocean global operational model with daily and 1/12 degrees spatial resolution is shown to have skills in representing low-frequency velocity variations (>1 month) in the West Spitsbergen Current and in the Yermak Pass. Model outputs suggest that the Yermak Pass Branch has had a robust winter pattern over the last 10 years, carrying on average 31% of the Atlantic Water volume transport of the West Spitsbergen Current (36% in autumn/winter). However, those figures have to be considered with caution as the model neither simulates tides nor fully resolves eddies and ignores residual mean currents that could be significant.
引用
收藏
页码:9332 / 9349
页数:18
相关论文
共 44 条
[1]  
Beszczynska-Moller A., 2015, PANGAEA
[2]  
BESZCZYNSKAMOLL. A, 2012, ICES JOURNAL OF MARI, V69, P852
[3]   Hydrography of the West Spitsbergen Current, Svalbard Branch: Autumn 2001 [J].
Cokelet, Edward D. ;
Tervalon, Nicole ;
Bellingham, James G. .
JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 2008, 113 (C1)
[4]   INTERNAL WAVES AND MIXING IN THE ARCTIC-OCEAN [J].
DASARO, EA ;
MORISON, JH .
DEEP-SEA RESEARCH PART A-OCEANOGRAPHIC RESEARCH PAPERS, 1992, 39 (2A) :S459-S484
[5]   The ERA-Interim reanalysis: configuration and performance of the data assimilation system [J].
Dee, D. P. ;
Uppala, S. M. ;
Simmons, A. J. ;
Berrisford, P. ;
Poli, P. ;
Kobayashi, S. ;
Andrae, U. ;
Balmaseda, M. A. ;
Balsamo, G. ;
Bauer, P. ;
Bechtold, P. ;
Beljaars, A. C. M. ;
van de Berg, L. ;
Bidlot, J. ;
Bormann, N. ;
Delsol, C. ;
Dragani, R. ;
Fuentes, M. ;
Geer, A. J. ;
Haimberger, L. ;
Healy, S. B. ;
Hersbach, H. ;
Holm, E. V. ;
Isaksen, L. ;
Kallberg, P. ;
Koehler, M. ;
Matricardi, M. ;
McNally, A. P. ;
Monge-Sanz, B. M. ;
Morcrette, J. -J. ;
Park, B. -K. ;
Peubey, C. ;
de Rosnay, P. ;
Tavolato, C. ;
Thepaut, J. -N. ;
Vitart, F. .
QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2011, 137 (656) :553-597
[6]  
Ezraty R., 2007, Arctic and Antarctic sea ice concentration and Arctic sea ice drift estimated from Special Sensor Microwave data
[7]   Tidal forcing, energetics, and mixing near the Yermak Plateau [J].
Fer, I. ;
Muller, M. ;
Peterson, A. K. .
OCEAN SCIENCE, 2015, 11 (02) :287-304
[8]   Internal Waves and Mixing in the Marginal Ice Zone near the Yermak Plateau [J].
Fer, Ilker ;
Skogseth, Ragnheid ;
Geyer, Florian .
JOURNAL OF PHYSICAL OCEANOGRAPHY, 2010, 40 (07) :1613-1630
[9]  
Gascard J.-C., 2017, ADCP MOORING DATA 20
[10]  
Gascard J-C., 1995, ARCTIC OCEANOGRAPHY, V49, P131, DOI [10.1029/ce049p0131, DOI 10.1029/CE049P0131]