In Vivo MR Imaging of Pulmonary Perfusion and Gas Exchange in Rats via Continuous Extracorporeal Infusion of Hyperpolarized 129Xe

被引:20
作者
Cleveland, Zackary I. [1 ]
Moeller, Harald E. [1 ,2 ]
Hedlund, Laurence W. [1 ]
Nouls, John C. [1 ]
Freeman, Matthew S. [1 ,3 ]
Qi, Yi [1 ]
Driehuys, Bastiaan [1 ]
机构
[1] Duke Univ, Med Ctr, Dept Radiol, Ctr Vivo Microscopy, Durham, NC 27710 USA
[2] Max Planck Inst Human Cognit & Brain Sci, Leipzig, Germany
[3] Duke Univ, Grad Program Med Phys, Durham, NC USA
来源
PLOS ONE | 2012年 / 7卷 / 02期
基金
美国国家卫生研究院;
关键词
NUCLEAR-MAGNETIC-RESONANCE; LASER-POLARIZED XE-129; INERT-GAS; LUNG; XENON; NMR; VENTILATION; RELAXATION; MICROSCOPY; PROTEIN;
D O I
10.1371/journal.pone.0031306
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Background: Hyperpolarized (HP) Xe-129 magnetic resonance imaging (MRI) permits high resolution, regional visualization of pulmonary ventilation. Additionally, its reasonably high solubility (> 10%) and large chemical shift range (> 200 ppm) in tissues allow HP Xe-129 to serve as a regional probe of pulmonary perfusion and gas transport, when introduced directly into the vasculature. In earlier work, vascular delivery was accomplished in rats by first dissolving HP Xe-129 in a biologically compatible carrier solution, injecting the solution into the vasculature, and then detecting HP Xe-129 as it emerged into the alveolar airspaces. Although easily implemented, this approach was constrained by the tolerable injection volume and the duration of the HP Xe-129 signal. Methods and Principal Findings: Here, we overcome the volume and temporal constraints imposed by injection, by using hydrophobic, microporous, gas-exchange membranes to directly and continuously infuse Xe-129 into the arterial blood of live rats with an extracorporeal (EC) circuit. The resulting gas-phase Xe-129 signal is sufficient to generate diffusive gas exchange-and pulmonary perfusion-dependent, 3D MR images with a nominal resolution of 2x2x2 mm(3). We also show that the Xe-129 signal dynamics during EC infusion are well described by an analytical model that incorporates both mass transport into the blood and longitudinal relaxation. Conclusions: Extracorporeal infusion of HP Xe-129 enables rapid, 3D MR imaging of rat lungs and, when combined with ventilation imaging, will permit spatially resolved studies of the ventilation-perfusion ratio in small animals. Moreover, EC infusion should allow Xe-129 to be delivered elsewhere in the body and make possible functional and molecular imaging approaches that are currently not feasible using inhaled HP Xe-129.
引用
收藏
页数:11
相关论文
共 59 条
  • [1] Alfaro V, 2001, CLIN EXP PHARMACOL P, V28, P419, DOI 10.1046/j.1440-1681.2001.3455.x
  • [2] Magnetic resonance imaging of dissolved hyperpolarized 129Xe using a membrane-based continuous flow system
    Amor, N.
    Zaenker, P. P.
    Bluemler, P.
    Meise, F. M.
    Schreiber, L. M.
    Scholz, A.
    Schmiedeskamp, J.
    Spiess, H. W.
    Muennemann, K.
    [J]. JOURNAL OF MAGNETIC RESONANCE, 2009, 201 (01) : 93 - 99
  • [3] NMR spectroscopy of laser-polarized 129Xe under continuous flow:: A method to study aqueous solutions of biomolecules
    Baumer, Daniela
    Brunner, Eike
    Bluemler, Peter
    Zaenker, Paul Philipp
    Spiess, Hans Wolfgang
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2006, 45 (43) : 7282 - 7284
  • [4] Cell uptake of a biosensor detected by hyperpolarized 129Xe NMR: The transferrin case
    Boutin, Celine
    Stopin, Antoine
    Lenda, Fatimazohra
    Brotin, Thierry
    Dutasta, Jean-Pierre
    Jamin, Nadege
    Sanson, Alain
    Boulard, Yves
    Leteurtre, Francois
    Huber, Gaspard
    Bogaert-Buchmann, Aurore
    Tassali, Nawal
    Desvaux, Herve
    Carriere, Marie
    Berthault, Patrick
    [J]. BIOORGANIC & MEDICINAL CHEMISTRY, 2011, 19 (13) : 4135 - 4143
  • [5] Four-dimensional MR microscopy of the mouse heart using radial acquisition and liposomal gadolinium contrast agent
    Bucholz, Elizabeth
    Ghaghada, Ketan
    Qi, Yi
    Mukundan, Srinivasan
    Johnson, G. Allan
    [J]. MAGNETIC RESONANCE IN MEDICINE, 2008, 60 (01) : 111 - 118
  • [6] Flow Visualization Study of a Novel Respiratory Assist Catheter
    Budilarto, Stephanus G.
    Frankowski, Brian J.
    Hattler, Brack G.
    Federspiel, William J.
    [J]. ARTIFICIAL ORGANS, 2009, 33 (06) : 411 - 418
  • [7] Cryptophane Xenon-129 Nuclear Magnetic Resonance Biosensors Targeting Human Carbonic Anhydrase
    Chambers, Jennifer M.
    Hill, P. Aru
    Aaron, Julie A.
    Han, Zhaohui
    Christianson, David W.
    Kuzma, Nicholas N.
    Dmochowski, Ivan J.
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2009, 131 (02) : 563 - 569
  • [8] Ventilation-synchronous magnetic resonance microscopy of pulmonary structure and ventilation in mice
    Chen, BT
    Yordanov, AT
    Johnson, GA
    [J]. MAGNETIC RESONANCE IN MEDICINE, 2005, 53 (01) : 69 - 75
  • [9] TISSUE-BLOOD PARTITION-COEFFICIENT FOR XENON - TEMPERATURE AND HEMATOCRIT DEPENDENCE
    CHEN, RYZ
    FAN, FC
    KIM, S
    JAN, KM
    USAMI, S
    CHIEN, S
    [J]. JOURNAL OF APPLIED PHYSIOLOGY, 1980, 49 (02) : 178 - 183
  • [10] Hyperpolarized 129Xe MR Imaging of Alveolar Gas Uptake in Humans
    Cleveland, Zackary I.
    Cofer, Gary P.
    Metz, Gregory
    Beaver, Denise
    Nouls, John
    Kaushik, S. Sivaram
    Kraft, Monica
    Wolber, Jan
    Kelly, Kevin T.
    McAdams, H. Page
    Driehuys, Bastiaan
    [J]. PLOS ONE, 2010, 5 (08):