Existence of Periodic Positive Solutions for Abstract Difference Equations

被引:0
作者
Kang, Shugui [1 ]
Cui, Yaqiong [1 ]
Guo, Jianmin [1 ]
机构
[1] Shanxi Datong Univ Datong, Inst Appl Math, Datong 037009, Shanxi, Peoples R China
关键词
D O I
10.1155/2011/870164
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We will consider the existence of multiple positive periodic solutions for a class of abstract difference equations by using the well-known fixed point theorem (due to Krasnoselskii).
引用
收藏
页数:7
相关论文
共 10 条
[1]  
[Anonymous], APPL MATH E NOTES
[2]  
[Anonymous], APPL ANAL
[3]  
[Anonymous], 1988, NOTES REPORTS MATH S
[4]  
[Anonymous], APPL MATH E NOTES
[5]  
Cheng S., 2000, FUNCT DIFFER EQU, V7, P223
[6]  
[高英 Gao Ying], 2003, [系统科学与数学, Journal of Systems Science and Mathematical Sciences], V23, P155
[7]   Existence of nontrivial periodic solutions for first order functional differential equations [J].
Kang, SG ;
Zhang, G .
APPLIED MATHEMATICS LETTERS, 2005, 18 (01) :101-107
[8]   Existence of maximal and minimal periodic solutions for first-order functional differential equations [J].
Kang, Shugui ;
Shi, Bao ;
Wang, Genqiang .
APPLIED MATHEMATICS LETTERS, 2010, 23 (01) :22-25
[9]   Existence and Uniqueness of Periodic Solutions of Mixed Monotone Functional Differential Equations [J].
Kang, Shugui ;
Cheng, Sui Sun .
ABSTRACT AND APPLIED ANALYSIS, 2009,
[10]   Periodic solutions of a single species discrete population model with periodic harvest/stock [J].
Zhang, RY ;
Wang, ZC ;
Chen, Y ;
Wu, J .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2000, 39 (1-2) :77-90