Therapeutic applications of ATP-(P2)-receptors agonists and antagonists

被引:39
作者
Fischer, B [1 ]
机构
[1] Bar Ilan Univ, Dept Chem, Gonda Goldschmied Med Res Ctr, IL-52900 Ramat Gan, Israel
关键词
agonist; antagonist; antineoplastic agents; ATP; ATP-analogue; cardiovascular system; cystic fibrosis; insulin secretion; ischaemia-reperfusion injury; P2X-receptor; P2Y-receptor; platelet aggregation;
D O I
10.1517/13543776.9.4.385
中图分类号
R914 [药物化学];
学科分类号
100701 ;
摘要
P2-receptors (P2-R), which recognise extracellular ATP, represent significant targets for novel drug development regarding different pathophysiological conditions. In recent years, approximately fifteen ATP receptor subtypes have been cloned; seven of which belong to the P2X-R family (ligand-gated-ion-channel receptors). The remaining subtypes belong to the P2Y-R family (G-protein coupled receptors). These receptors have been classified based on their putative molecular structure, function, and the action of a subtype selective drug on the cloned receptor. A limited number of reports describe the identification of potent and selective P2X/P2Y agonists, thus extending the restricted arsenal of P2-R agonists consisting primarily of commercial compounds. Several new and subtype selective antagonists have been recently identified which open a new avenue of P2X or P2Y subtype selective antagonists for receptor studies. Current applications of P2-R agonists and antagonists include their use as insulin secretagogues, inhibitors of ADP-induced platelet aggregation, agents for hydration of lung mucous in cystic fibrosis (CF) patients, modulators of cardiac muscle contractility, and antineoplastic agents. This paper reviews selected P2-R related publications and patents issued between 1995 and 1998 for newly cloned P2-R, drug candidates, and the potential therapeutic applications of the drugs.
引用
收藏
页码:385 / 399
页数:15
相关论文
共 76 条
[1]  
Abbracchio MP, 1996, DRUG DEVELOP RES, V39, P393, DOI 10.1002/(SICI)1098-2299(199611/12)39:3/4<393::AID-DDR21>3.0.CO
[2]  
2-1
[3]   PURINOCEPTORS - ARE THERE FAMILIES OF P2X AND P2Y PURINOCEPTORS [J].
ABBRACCHIO, MP ;
BURNSTOCK, G .
PHARMACOLOGY & THERAPEUTICS, 1994, 64 (03) :445-475
[4]   Purinergic signalling: Pathophysiological roles [J].
Abbracchio, MP ;
Burnstock, G .
JAPANESE JOURNAL OF PHARMACOLOGY, 1998, 78 (02) :113-145
[5]  
AKBER GKM, 1996, J BIOL CHEM, V271, P18363
[6]   G-PROTEIN-COUPLED RECEPTORS FOR ATP AND OTHER NUCLEOTIDES - A NEW RECEPTOR FAMILY [J].
BARNARD, EA ;
BURNSTOCK, G ;
WEBB, TE .
TRENDS IN PHARMACOLOGICAL SCIENCES, 1994, 15 (03) :67-70
[7]   Nucleotide receptors in the nervous system - An abundant component using diverse transduction mechanisms [J].
Barnard, EA ;
Simon, J ;
Webb, TE .
MOLECULAR NEUROBIOLOGY, 1997, 15 (02) :103-129
[8]   Effect of uridine 5'-triphosphate plus amiloride on mucociliary clearance in adult cystic fibrosis [J].
Bennett, WD ;
Olivier, KN ;
Zeman, KL ;
Hohneker, KW ;
Boucher, RC ;
Knowles, MR .
AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 1996, 153 (06) :1796-1801
[9]   P2 purine and pyrimidine receptors: Emerging superfamilies of G-protein-coupled and ligand-gated ion channel receptors [J].
Bhagwat, SS ;
Williams, M .
EUROPEAN JOURNAL OF MEDICINAL CHEMISTRY, 1997, 32 (03) :183-193
[10]   A P2X PURINOCEPTOR CDNA CONFERRING A NOVEL PHARMACOLOGICAL PROFILE [J].
BO, XN ;
ZHANG, Y ;
NASSAR, M ;
BURNSTOCK, G ;
SCHOEPFER, R .
FEBS LETTERS, 1995, 375 (1-2) :129-133