Generalized stability condition for generalized and doubly-generalized LDPC codes

被引:3
|
作者
Paolini, Enrico [1 ]
Fossorier, Marc [2 ]
Chiani, Marco [1 ,3 ]
机构
[1] Univ Bologna, DEIS, Cesena, FC, Italy
[2] Univ Hawaii, EE Dept, Honolulu, HI 96822 USA
[3] Univ Bologna, DEIS, Cesena, Italy
来源
2007 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY PROCEEDINGS, VOLS 1-7 | 2007年
关键词
D O I
10.1109/ISIT.2007.4557440
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, the stability condition for low-density parity-check (LDPC) codes on the binary erasure channel (BEC) is extended to generalized LDPC (GLDPC) codes and doubly-generalized LDPC (D-GLDPC) codes. It is proved that, in both cases, the stability condition only involves the component codes with minimum distance 2. The stability condition for GLDPC codes is always expressed as an upper bound to the decoding threshold. This is not possible for D-GLDPC codes, unless all the generalized variable nodes have minimum distance at least 3. Furthermore, a condition called derivative matching is defined in the paper. This condition is sufficient for a GLDPC or D-GLDPC code to achieve the stability condition with equality. If this condition is satisfied, the threshold of D-GLDPC codes (whose generalized variable nodes have all minimum distance at least 3) and GLDPC codes can be expressed in closed form.
引用
收藏
页码:1536 / +
页数:2
相关论文
共 50 条
  • [41] Improving the Thresholds of Generalized LDPC Codes With Convolutional Code Constraints
    Farooq, Muhammad Umar
    Amat, Alexandre
    Lentmaier, Michael
    IEEE COMMUNICATIONS LETTERS, 2023, 27 (07) : 1679 - 1683
  • [42] A Generalized Algebraic Approach to Optimizing SC-LDPC Codes
    Beemer, Allison
    Habib, Salman
    Kelley, Christine A.
    Kliewer, Joerg
    2017 55TH ANNUAL ALLERTON CONFERENCE ON COMMUNICATION, CONTROL, AND COMPUTING (ALLERTON), 2017, : 672 - 679
  • [43] Analyzing the Finite-Length Performance of Generalized LDPC Codes
    Olmos, Pablo M.
    Mitchell, David G. M.
    Costello, Daniel J., Jr.
    2015 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2015, : 2683 - 2687
  • [44] Ensemble enumerators for protograph-based generalized LDPC codes
    Abu-Surra, Shadi
    Ryan, William E.
    Divsalar, Dariush
    GLOBECOM 2007: 2007 IEEE GLOBAL TELECOMMUNICATIONS CONFERENCE, VOLS 1-11, 2007, : 1492 - +
  • [45] A Class of Generalized LDPC Codes with Fast Parallel Decoding Algorithms
    Wang, Xiuni
    Ma, Xiao
    IEEE COMMUNICATIONS LETTERS, 2009, 13 (07) : 531 - 533
  • [46] Neural Min-Sum Decoding for Generalized LDPC Codes
    Kwak, Hee-Youl
    Kim, Jae-Won
    Kim, Yongjune
    Kim, Sang-Hyo
    No, Jong-Seon
    IEEE COMMUNICATIONS LETTERS, 2022, 26 (12) : 2841 - 2845
  • [47] On the equivalence of generalized concatenated codes and generalized error location codes
    Maucher, J
    Zyablov, VV
    Bossert, M
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2000, 46 (02) : 642 - 649
  • [48] Generalized LDPC codes and turbo-product codes with reed-muller component codes
    Djordjevic, Ivan B.
    TELSIKS 2007: 8TH INTERNATIONAL CONFERENCE ON TELECOMMUNICATIONS IN MODERN SATELLITE, CABLE AND BROADCASTING SERVICES, VOLS 1 AND 2, 2007, : 127 - 134
  • [49] Generalized LDPC codes with Reed-Solomon and BCH codes as component codes for binary channels
    Miladinovic, N
    Fossorier, M
    GLOBECOM '05: IEEE Global Telecommunications Conference, Vols 1-6: DISCOVERY PAST AND FUTURE, 2005, : 1239 - 1244
  • [50] The Cycle-Concentrating PEG Algorithm for Protograph Generalized LDPC Codes
    Yun, Dae-Young
    Kim, Jae-Won
    Kwak, Hee-Youl
    No, Jong-Seon
    IEEE ACCESS, 2023, 11 : 57285 - 57294