Powering RLC load by an array of self-sustained oscillators

被引:3
|
作者
Fouego, D. Youmbi [1 ,2 ]
Dongmo, E. D. [1 ,2 ]
Woafo, P. [1 ,2 ,3 ]
机构
[1] Fac Sci, Dept Phys, Lab Modelling & Simulat Engn Biomimet & Prototype, POB 812, Yaounde, Cameroon
[2] Fac Sci, Dept Phys, TWAS Res Unit, POB 812, Yaounde, Cameroon
[3] Vrije Univ Brussel, Appl Phys Res Grp APHY, Pl Laan 2, B-1050 Brussels, Belgium
关键词
Biological oscillators; Array of Van de Pol oscillators; Array of Hindmarsh-Rose oscillators; Power generation; RLC load; Chaos; MODEL; BIFURCATIONS; DYNAMICS; NEURONS; SYSTEM;
D O I
10.1016/j.chaos.2017.08.018
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This work deals with the analysis of the voltage amplitude generated in a linear load by an array of Van der Pol (VDP) and Hindmarsh-Rose (HR) oscillators. For the array of Van der Pol oscillators, it is found that after a threshold number of oscillators under which the power is equal to zero, the power increases with the size of the array. A high order nonlinearity in the damping of the Van der Pol oscillator increases the power. In the case of the array of HR oscillators, it is shown that varying the coupling coefficient leads to the appearance of chaotic dynamics in the system. Contrary to the case of the VDP oscillators, it is found that the voltage amplitudes decrease when the size of the array of the HR oscillators increases. These results can be linked to the mechanism of biological oscillators powering biological organs. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:222 / 227
页数:6
相关论文
共 50 条
  • [31] Effects of electromagnetic forcing on self-sustained jet oscillations
    Kalter, R.
    Tummers, M. J.
    Kenjeres, S.
    Righolt, B. W.
    Kleijn, C. R.
    PHYSICS OF FLUIDS, 2014, 26 (06)
  • [32] Memory effect in a self-sustained birhythmic biological system
    Chamgoue, A. Cheage
    Ngueuteu, G. S. M.
    Yamapi, R.
    Woafo, R.
    CHAOS SOLITONS & FRACTALS, 2018, 109 : 160 - 169
  • [33] Modeling and Dynamics of a Self-Sustained Electrostatic Microelectromechanical System
    Kwuimy, C. A. Kitio
    Woafo, P.
    JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS, 2010, 5 (02): : 1 - 7
  • [34] Investigation of self-sustained beating oscillations in a Rijke burner
    Weng, Fanglong
    Li, Suhui
    Zhong, Di
    Zhu, Min
    COMBUSTION AND FLAME, 2016, 166 : 181 - 191
  • [35] Self-sustained peristaltic waves: Explicit asymptotic solutions
    Dudchenko, O. A.
    Guria, G. Th.
    PHYSICAL REVIEW E, 2012, 85 (02):
  • [36] A description of the self-sustained evaporation-front shape in a layer of metastable liquid
    Sharypov, O. V.
    TECHNICAL PHYSICS LETTERS, 2017, 43 (04) : 383 - 385
  • [37] Modulation of synchronization dynamics in a network of self-sustained systems
    Kadji, H. G. Enjieu
    Orou, J. B. Chabi
    Sanjuan, M. A. F.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2014, 19 (03) : 656 - 672
  • [38] Self-Sustained Libration Regime in Nonlinear Microelectromechanical Devices
    Houri, Samer
    Asano, Motoki
    Okamoto, Hajime
    Yamaguchi, Hiroshi
    PHYSICAL REVIEW APPLIED, 2021, 16 (06)
  • [39] Reservoir computing using self-sustained oscillations in a locally connected neural network
    Kawai, Yuji
    Park, Jihoon
    Asada, Minoru
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [40] Controlling self-sustained spiking activity by adding or removing one network link
    Xu, Kesheng
    Huang, Wenwen
    Li, Baowen
    Dhamala, Mukesh
    Liu, Zonghua
    EPL, 2013, 102 (05)