Improving Portfolios Global Performance with Robust Covariance Matrix Estimation: Application to the Maximum Variety Portfolio

被引:0
|
作者
Jay, Emmanuelle [1 ,2 ]
Terreaux, Eugenie [4 ]
Ovarlez, Jean-Philippe [3 ]
Pascal, Frederic [5 ]
机构
[1] Fideas Capital, 21 Ave Opera, F-75001 Paris, France
[2] Quanted & Europl Inst Finance, Palais Brongniart, 28 Pl Bourse, F-75002 Paris, France
[3] Univ Paris Saclay, ONERA, DEMR, F-91123 Palaiseau, France
[4] Cent Supelec, 3 Rue Joliot Curie, F-91190 Gif Sur Yvette, France
[5] Univ Paris Sud, CNRS, Cent Supelec, L2S, 3 Rue Joliot Curie, F-91190 Gif Sur Yvette, France
来源
2018 26TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO) | 2018年
关键词
Robust Covariance Matrix Estimation; Model Order Selection; Random Matrix Theory; Portfolio Optimisation; Financial Time Series; Multi-Factor Model; Elliptical Symmetric Noise; Maximum Variety Portfolio; NOISE; DISTRIBUTIONS; LOCATION;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper presents how the most recent improvements made on covariance matrix estimation and model order selection can be applied to the portfolio optimisation problem. The particular case of the Maximum Variety Portfolio is treated but the same improvements apply also in the other optimisation problems such as the Minimum Variance Portfolio. We assume that the most important information (or the latent factors) are embedded in correlated Elliptical Symmetric noise extending classical Gaussian assumptions. We propose here to focus on a recent method of model order selection allowing to efficiently estimate the subspace of main factors describing the market. This non-standard model order selection problem is solved through Random Matrix Theory and robust covariance matrix estimation. The proposed procedure will be explained through synthetic data and be applied and compared with standard techniques on real market data showing promising improvements.
引用
收藏
页码:1107 / 1111
页数:5
相关论文
共 13 条
  • [1] Improving portfolios global performance using a cleaned and robust covariance matrix estimate
    Jay, Emmanuelle
    Soler, Thibault
    Terreaux, Eugenie
    Ovarlez, Jean-Philippe
    Pascal, Frederic S.
    De Peretti, Philippe
    Chorro, Christophe
    SOFT COMPUTING, 2020, 24 (12) : 8643 - 8654
  • [2] ROBUST COVARIANCE MATRIX ESTIMATION AND PORTFOLIO ALLOCATION: THE CASE OF NON-HOMOGENEOUS ASSETS
    Jay, E.
    Soler, T.
    Ovarlez, J-P
    De Peretti, P.
    Chorro, C.
    2020 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2020, : 8449 - 8453
  • [3] Improving portfolios global performance using a cleaned and robust covariance matrix estimate
    Emmanuelle Jay
    Thibault Soler
    Eugénie Terreaux
    Jean-Philippe Ovarlez
    Frédéric Pascal
    Philippe De Peretti
    Christophe Chorro
    Soft Computing, 2020, 24 : 8643 - 8654
  • [4] Improved Covariance Matrix Estimation With an Application in Portfolio Optimization
    Deshmukh, Samruddhi
    Dubey, Amartansh
    IEEE SIGNAL PROCESSING LETTERS, 2020, 27 : 985 - 989
  • [5] Robust Estimation of the Covariance Matrix From Data With Outliers
    Stoica, Petre
    Babu, Prabhu
    Varshney, Piyush
    IEEE OPEN JOURNAL OF SIGNAL PROCESSING, 2024, 5 : 1061 - 1072
  • [6] Robust estimation of a high-dimensional integrated covariance matrix
    Morimoto, Takayuki
    Nagata, Shuichi
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2017, 46 (02) : 1102 - 1112
  • [7] Robust Covariance Matrix Estimation in Heterogeneous Low Rank Context
    Breloy, Arnaud
    Ginolhac, Guillaume
    Pascal, Frederic
    Forster, Philippe
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2016, 64 (22) : 5794 - 5806
  • [8] Robust signal and noise covariance matrix estimation using Riemannian optimization
    Brunnstrom, Jesper
    Moonen, Marc
    Elvander, Filip
    32ND EUROPEAN SIGNAL PROCESSING CONFERENCE, EUSIPCO 2024, 2024, : 291 - 295
  • [9] Robust estimation for the covariance matrix of multivariate time series based on normal mixtures
    Kim, Byungsoo
    Lee, Sangyeol
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2013, 57 (01) : 125 - 140
  • [10] MIMO filters based on robust rank-constrained Kronecker covariance matrix estimation
    Breloy, Arnaud
    Ginolhac, Guillaume
    Gao, Yongchan
    Pascal, Frederic
    SIGNAL PROCESSING, 2021, 187