Explicit formulas of the heat kernel on the quaternionic projective spaces

被引:0
作者
Hafoud, Ali [1 ]
Ghanmi, Allal [2 ]
机构
[1] Ctr Reg Metiers Educ & Format Kenitra, Kenitra, Morocco
[2] Mohammed V Univ Rabat, Fac Sci, Dept Math, Anal PDE & Spectral Geometry,CeReMAR,Lab MIA SI, POB 1014, Rabat, Morocco
关键词
Heat equation; Heat kernel; Quaternionic projective space; Hopf fibration; Jacobi polynomials; LAPLACIANS;
D O I
10.21494/ISTE.OP.2022.0809
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the heat equation on the quaternionic projective space P-n(H), and we establish two formulas for the heat kernel, a series expansion involving Jacobi polynomials, and an integral representation involving a theta-function. More precisely, using the quaternonic Hopf fibration and the explicit integral representation of the heat kernel on the complex projective space P2+1 (C) , as well as an integral representation of Jacobi polynomials in terms of Gegenbauer polynomials, we give an explicit integral representation of the heat kernel on the n-quaternionic projective space. We also establish an explicit series expansion of the heat kernel in terms of the Jacobi polynomials. Moreover, we derive an explicit formula of the heat kernel on the sphere S-4.
引用
收藏
页码:1 / 11
页数:11
相关论文
共 23 条
[1]  
[Anonymous], 2009, AMSIP STUDIES ADV MA
[2]  
[Anonymous], 1995, STUDIES ADV MATH
[3]  
[Anonymous], 1998, HEAT KERNELS SPECTRA
[4]   HEAT EQUATION AND INDEX THEOREM [J].
ATIYAH, M ;
BOTT, R ;
PATODI, VK .
INVENTIONES MATHEMATICAE, 1973, 19 (04) :279-330
[5]   Selberg trace formulae for heat and wave kernels of Maass Laplacians on compact forms of the complex hyperbolic space Hn(C), n ≥ 2 [J].
Ayaz, K ;
Intissar, A .
DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2001, 15 (01) :1-31
[6]   Stochastic areas, winding numbers and Hopf fibrations [J].
Baudoin, Fabrice ;
Wang, Jing .
PROBABILITY THEORY AND RELATED FIELDS, 2017, 169 (3-4) :977-1005
[7]  
BENABDALLAH AI, 1973, B SOC MATH FR, V101, P265
[8]  
Bunke U, 1994, ANN GLOB ANAL GEOM, V12, P357
[9]  
Calin O, 2011, APPL NUMER HARMON AN, P3, DOI 10.1007/978-0-8176-4995-1
[10]  
Debiard A., 1986, C R ACAD SCI PARIS 1, V303