Extracting photometric redshift from galaxy flux and image data using neural networks in the CSST survey

被引:18
作者
Zhou, Xingchen [1 ,2 ]
Gong, Yan [1 ,3 ]
Meng, Xian-Min [1 ]
Cao, Ye [1 ,2 ]
Chen, Xuelei [2 ,4 ,5 ]
Chen, Zhu [6 ]
Du, Wei [6 ]
Fu, Liping [6 ]
Luo, Zhijian [6 ]
机构
[1] Chinese Acad Sci, Natl Astron Observ, Key Lab Space Astron & Technol, 20A Datun Rd, Beijing 100101, Peoples R China
[2] Univ Chinese Acad Sci, NAOC, Beijing 100049, Peoples R China
[3] Chinese Acad Sci, Sci Ctr China Space Stn Telescope, Natl Astron Observ, 20A Datun Rd, Beijing 100101, Peoples R China
[4] Chinese Acad Sci, Natl Astron Observ, Key Lab Computat Astrophys, 20A Datun Rd, Beijing 100101, Peoples R China
[5] Peking Univ, Ctr High Energy Phys, Beijing 100871, Peoples R China
[6] Shanghai Normal Univ, Shanghai Key Lab Astrophys, Shanghai 200234, Peoples R China
基金
中国国家自然科学基金;
关键词
methods: statistical; techniques: image processing; techniques: photometric; galaxies: distances and redshifts; galaxies: photometry; large-scale structure of Structure; DARK ENERGY SURVEY; TELESCOPE ADVANCED CAMERA; DIGITAL SKY SURVEY; SPACE-TELESCOPE; WIDE-FIELD; COSMOLOGY; CALIBRATION; UNIVERSE; CATALOG;
D O I
10.1093/mnras/stac786
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The accuracy of galaxy photometric redshift (photo-z) can significantly affect the analysis of weak gravitational lensing measurements, especially for future high-precision surveys. In this work, we try to extract photo-z information from both galaxy flux and image data expected to be obtained by China Space Station Telescope (CSST) using neural networks. We generate mock galaxy images based on the observational images from the Advanced Camera for Surveys of Hubble Space Telescope (HST-ACS) and COSMOS catalogues, considering the CSST instrumental effects. Galaxy flux data are then measured directly from these images by aperture photometry. The multilayer perceptron (MLP) and convolutional neural network (CNN) are constructed to predict photo-z from fluxes and images, respectively. We also propose to use an efficient hybrid network, which combines the MLP and CNN, by employing the transfer learning techniques to investigate the improvement of the result with both flux and image data included. We find that the photo-z accuracy and outlier fraction can achieve sigma(NMAD) = 0.023 and eta = 1.43 per cent for the MLP using flux data only, and sigma(NMAD) = 0.025 and eta = 1.21 per cent for the CNN using image data only. The result can be further improved in high efficiency as sigma(NMAD) = 0.020 and eta = 0.90 per cent for the hybrid transfer network. These approaches result in similar galaxy median and mean redshifts 0.8 and 0.9, respectively, for the redshift range from 0 to 4. This indicates that our networks can effectively and properly extract photo-z information from the CSST galaxy flux and image data.
引用
收藏
页码:4593 / 4603
页数:11
相关论文
共 68 条
[1]   The Dark Energy Survey: more than dark energy - an overview [J].
Abbott, T. ;
Abdalla, F. B. ;
Aleksic, J. ;
Allam, S. ;
Amara, A. ;
Bacon, D. ;
Balbinot, E. ;
Banerji, M. ;
Bechtol, K. ;
Benoit-Levy, A. ;
Bernstein, G. M. ;
Bertin, E. ;
Blazek, J. ;
Bonnett, C. ;
Bridle, S. ;
Brooks, D. ;
Brunner, R. J. ;
Buckley-Geer, E. ;
Burke, D. L. ;
Caminha, G. B. ;
Capozzi, D. ;
Carlsen, J. ;
Carnero-Rosell, A. ;
Carollo, M. ;
Carrasco-Kind, M. ;
Carretero, J. ;
Castander, F. J. ;
Clerkin, L. ;
Collett, T. ;
Conselice, C. ;
Crocce, M. ;
Cunha, C. E. ;
D'Andrea, C. B. ;
da Costa, L. N. ;
Davis, T. M. ;
Desai, S. ;
Diehl, H. T. ;
Dietrich, J. P. ;
Dodelson, S. ;
Doel, P. ;
Drlica-Wagner, A. ;
Estrada, J. ;
Etherington, J. ;
Evrard, A. E. ;
Fabbri, J. ;
Finley, D. A. ;
Flaugher, B. ;
Foley, R. J. ;
Fosalba, P. ;
Frieman, J. .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2016, 460 (02) :1270-1299
[2]   The Dark Energy Survey Data Release 2 [J].
Abbott, T. M. C. ;
Adamow, M. ;
Aguena, M. ;
Allam, S. ;
Amon, A. ;
Annis, J. ;
Avila, S. ;
Bacon, D. ;
Banerji, M. ;
Bechtol, K. ;
Becker, M. R. ;
Bernstein, G. M. ;
Bertin, E. ;
Bhargava, S. ;
Bridle, S. L. ;
Brooks, D. ;
Burke, D. L. ;
Rosell, A. Carnero ;
Kind, M. Carrasco ;
Carretero, J. ;
Castander, F. J. ;
Cawthon, R. ;
Chang, C. ;
Choi, A. ;
Conselice, C. ;
Costanzi, M. ;
Crocce, M. ;
da Costa, L. N. ;
Davis, T. M. ;
De Vicente, J. ;
DeRose, J. ;
Desai, S. ;
Diehl, H. T. ;
Dietrich, J. P. ;
Drlica-Wagner, A. ;
Eckert, K. ;
Elvin-Poole, J. ;
Everett, S. ;
Evrard, A. E. ;
Ferrero, I ;
Ferte, A. ;
Flaugher, B. ;
Fosalba, P. ;
Friedel, D. ;
Frieman, J. ;
Garcia-Bellido, J. ;
Gaztanaga, E. ;
Gelman, L. ;
Gerdes, D. W. ;
Giannantonio, T. .
ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 2021, 255 (02)
[3]   Photometric redshifts for weak lensing tomography from space: the role of optical and near infrared photometry [J].
Abdalla, F. B. ;
Amara, A. ;
Capak, P. ;
Cypriano, E. S. ;
Lahav, O. ;
Rhodes, J. .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2008, 387 (03) :969-986
[4]  
Abell P. A., 2009, ARXIV09120201
[5]  
Akeson R, 2019, arXiv:1902.05569
[6]   Measuring and modelling the redshift evolution of clustering:: the Hubble Deep Field North [J].
Arnouts, S ;
Cristiani, S ;
Moscardini, L ;
Matarrese, S ;
Lucchin, F ;
Fontana, A ;
Giallongo, E .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 1999, 310 (02) :540-556
[7]  
Banerji M, 2008, MON NOT R ASTRON SOC, V386, P1219, DOI 10.1111/J.1365-2966.2008.13095.X
[8]  
Blundell C, 2015, PR MACH LEARN RES, V37, P1613
[9]   PERFECTING THE PHOTOMETRIC CALIBRATION OF THE ACS CCD CAMERAS [J].
Bohlin, Ralph C. .
ASTRONOMICAL JOURNAL, 2016, 152 (03)
[10]  
Bolzonella M, 2000, ASTRON ASTROPHYS, V363, P476