A Conservative Memristive System with Amplitude Control and Offset Boosting

被引:55
|
作者
Zhang, Xin [1 ,2 ]
Li, Chunbiao [1 ,2 ]
Dong, Enzeng [3 ]
Zhao, Yibo [1 ]
Liu, Zuohua [4 ]
机构
[1] Nanjing Univ Informat Sci & Technol, Jiangsu Collaborat Innovat Ctr Atmospher Environm, Nanjing 210044, Peoples R China
[2] Nanjing Univ Informat Sci & Technol, Sch Artificial Intelligence, Nanjing 210044, Peoples R China
[3] Tianjin Univ Technol, Tianjin Key Lab Control Theory & Applicat Complic, Tianjin 300384, Peoples R China
[4] Chongqing Univ, State Key Lab Coal Mine Disaster Dynam & Control, Chongqing 400044, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
Conservative chaotic system; memristor rheostat; bifurcation; control; CHAOTIC SYSTEM; NO-EQUILIBRIUM; HIDDEN; ATTRACTORS; FLOWS; LINE; BIFURCATION; HYPERCHAOS; OSCILLATOR; DYNAMICS;
D O I
10.1142/S0218127422500572
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Based on a variable-boostable chaotic system, a conservative chaotic system with controllable amplitude and offset is proposed. The system exhibits rich symmetrical dynamics under different parameters and initial conditions. More interestingly, a parameter of memristor poses a partial amplitude control to a system variable. Furthermore, the derived memristive system has the property of offset boosting, where an independent constant can be introduced for free rescaling of the average value of a system variable. Experimental circuit with a memristor rheostat is designed for amplitude control. Circuit simulation based on Multisim software agrees well with the systematic analysis and numerical exploration. To the best of our knowledge, in the literature there is no 3D conservative memristive system reported with such properties as amplitude control and offset boosting.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Mernristor Initial-Offset Boosting in Memristive HR Neuron Model with Hidden Firing Patterns
    Bao, Han
    Liu, Wenbo
    Ma, Jun
    Wu, Huagan
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2020, 30 (10):
  • [42] A memristive chaotic system with offset-boostable conditional symmetry
    Lu, Tianai
    Li, Chunbiao
    Wang, Xiong
    Tao, Changyuan
    Liu, Zuohua
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2020, 229 (6-7): : 1059 - 1069
  • [43] A memristive chaotic system with offset-boostable conditional symmetry
    Tianai Lu
    Chunbiao Li
    Xiong Wang
    Changyuan Tao
    Zuohua Liu
    The European Physical Journal Special Topics, 2020, 229 : 1059 - 1069
  • [44] A Memristive Hyperjerk Chaotic System: Amplitude Control, FPGA Design, and Prediction with Artificial Neural Network
    Wang, Ran
    Li, Chunbiao
    Cicek, Serdar
    Rajagopal, Karthikeyan
    Zhang, Xin
    COMPLEXITY, 2021, 2021
  • [45] A Memristive Hyperjerk Chaotic System: Amplitude Control, FPGA Design, and Prediction with Artificial Neural Network
    Wang, Ran
    Li, Chunbiao
    Çiçek, Serdar
    Rajagopal, Karthikeyan
    Zhang, Xin
    Complexity, 2021, 2021
  • [46] Numerical, electronic simulations and experimental analysis of a no-equilibrium point chaotic circuit with offset boosting and partial amplitude control
    Justin Roger Mboupda Pone
    Victor Kamdoum Tamba
    Guillaume Honore Kom
    Mathieu Jean Pierre Pesdjock
    Alain Tiedeu
    Martin Kom
    SN Applied Sciences, 2019, 1
  • [47] Numerical, electronic simulations and experimental analysis of a no-equilibrium point chaotic circuit with offset boosting and partial amplitude control
    Pone, Justin Roger Mboupda
    Tamba, Victor Kamdoum
    Kom, Guillaume Honore
    Pesdjock, Mathieu Jean Pierre
    Tiedeu, Alain
    Kom, Martin
    SN APPLIED SCIENCES, 2019, 1 (08):
  • [48] Initial offset boosting coexisting attractors in memristive multi-double-scroll Hopfield neural network
    Sen Zhang
    Jiahao Zheng
    Xiaoping Wang
    Zhigang Zeng
    Shaobo He
    Nonlinear Dynamics, 2020, 102 : 2821 - 2841
  • [49] Initial offset boosting coexisting attractors in memristive multi-double-scroll Hopfield neural network
    Zhang, Sen
    Zheng, Jiahao
    Wang, Xiaoping
    Zeng, Zhigang
    He, Shaobo
    NONLINEAR DYNAMICS, 2020, 102 (04) : 2821 - 2841
  • [50] Hamilton energy of a complex chaotic system and offset boosting
    Gao, Xiaohong
    PHYSICA SCRIPTA, 2024, 99 (01)