Backward motion and waiting time phenomena for degenerate parabolic equations with nonlinear gradient absorption

被引:3
作者
Namlyeyeva, Yu V. [1 ]
Taranets, R. M. [1 ,2 ]
机构
[1] NAS Ukraine, Inst Appl Math & Mech, UA-83114 Donetsk, Ukraine
[2] Univ Nottingham, Sch Math Sci, Nottingham NG7 2RD, England
关键词
HAMILTON-JACOBI EQUATIONS; CAUCHY-PROBLEM; EXTINCTION; SUPPORTS; DYNAMICS;
D O I
10.1007/s00229-011-0454-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study energy solutions of a Cauchy problem for the p-Laplace evolution equation with nonlinear gradient absorption and nonnegative compactly supported initial data. We obtain the sufficient local asymptotic conditions on initial data that imply the backward motion and waiting time phenomena.
引用
收藏
页码:475 / 500
页数:26
相关论文
共 23 条
[1]  
Andreucci D., 2004, UKR MATH B, V1, P1
[2]  
Antontsev S. N., 2002, PROGR NONLINEAR DIFF, VXI
[3]   Gradient estimates for a degenerate parabolic equation with gradient absorption and applications [J].
Bartier, Jean-Philippe ;
Laurencot, Philippe .
JOURNAL OF FUNCTIONAL ANALYSIS, 2008, 254 (03) :851-878
[4]   The local theory for viscous Hamilton-Jacobi equations in Lebesgue spaces [J].
Ben-Artzi, M ;
Souplet, P ;
Weissler, FB .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2002, 81 (04) :343-378
[5]  
Benachour S, 2002, ASYMPTOTIC ANAL, V31, P229
[6]   Extinction and decay estimates for viscous Hamilton-Jacobi equations in RN [J].
Benachour, S ;
Laurençot, P ;
Schmitt, D .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2002, 130 (04) :1103-1111
[7]  
BERNIS F, 1986, P ROY SOC EDINB A, V104, P1
[8]   Conditions for instantaneous support shrinking and sharp estimates for the support of the solution of the Cauchy problem for a doubly non-linear parabolic equation with absorption [J].
Degtyarev, S. P. .
SBORNIK MATHEMATICS, 2008, 199 (3-4) :511-538
[9]   FINITE EXTINCTION TIME FOR SOME PERTURBED HAMILTON-JACOBI EQUATIONS [J].
DIAZ, G ;
REY, JM .
APPLIED MATHEMATICS AND OPTIMIZATION, 1993, 27 (01) :1-33
[10]  
Djie KC, 2007, INTERFACE FREE BOUND, V9, P95