SCALING LIMITS OF RANDOM GRAPHS FROM SUBCRITICAL CLASSES

被引:32
作者
Panagiotou, Konstantinos [1 ]
Stufler, Benedikt [1 ]
Weller, Kerstin [2 ]
机构
[1] Univ Munich, Math Inst, Theresienstr 39, D-80333 Munich, Germany
[2] Swiss Fed Inst Technol, Inst Theoret Comp Sci, Univ Str 6, CH-8092 Zurich, Switzerland
关键词
Continuum random tree; scaling limits; random graphs; subcritical graph classes; GALTON-WATSON TREES; CONTINUUM RANDOM TREE; PLANAR MAPS; EXCURSIONS; DIAMETER; THEOREM; HEIGHT;
D O I
10.1214/15-AOP1048
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We study the uniform random graph C-n with n vertices drawn from a subcritical class of connected graphs. Our main result is that the resealed graph C-n / root n converges to the Brownian continuum random tree T-e multiplied by a constant scaling factor that depends on the class under consideration. In addition, we provide sub-Gaussian tail bounds for the diameter D (C-n) and height H(C-n(center dot)) of the rooted random graph C-n(center dot) We give analytic expressions for the scaling factor in several cases, including for example the class of outerplanar graphs. Our methods also enable us to study first passage percolation on C-n, where we also show the convergence to T-e under an appropriate rescaling.
引用
收藏
页码:3291 / 3334
页数:44
相关论文
共 44 条
[1]   SUB-GAUSSIAN TAIL BOUNDS FOR THE WIDTH AND HEIGHT OF CONDITIONED GALTON-WATSON TREES [J].
Addario-Berry, Louigi ;
Devroye, Luc ;
Janson, Svante .
ANNALS OF PROBABILITY, 2013, 41 (02) :1072-1087
[2]   Some families of increasing planar maps [J].
Albenque, Marie ;
Marckert, Jean-Francois .
ELECTRONIC JOURNAL OF PROBABILITY, 2008, 13 :1624-1671
[3]   THE CONTINUUM RANDOM TREE-III [J].
ALDOUS, D .
ANNALS OF PROBABILITY, 1993, 21 (01) :248-289
[4]   THE CONTINUUM RANDOM TREE .1. [J].
ALDOUS, D .
ANNALS OF PROBABILITY, 1991, 19 (01) :1-28
[5]  
Aldous D., 1991, London Math. Soc. Lecture Note Ser., V167, P23, DOI [10.1017/CBO9780511662980.003, DOI 10.1017/CBO9780511662980.003]
[6]  
[Anonymous], 2009, ANAL COMBINATORICS, DOI [DOI 10.1017/CBO9780511801655, 10.1017/CBO9780511801655]
[7]  
Bergeron F., 1998, Encyclopedia Math. Appl, V67
[8]   ON PROPERTIES OF RANDOM DISSECTIONS AND TRIANGULATIONS [J].
Bernasconi, Nicla ;
Panagiotou, Konstantinos ;
Steger, Angelika .
COMBINATORICA, 2010, 30 (06) :627-654
[9]   The Degree Sequence of Random Graphs from Subcritical Classes [J].
Bernasconi, Nicla ;
Panagiotou, Konstantinos ;
Steger, Angelika .
COMBINATORICS PROBABILITY & COMPUTING, 2009, 18 (05) :647-681
[10]   Scaling limit of random planar quadrangulations with a boundary [J].
Bettinelli, Jeremie .
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2015, 51 (02) :432-477